Open Access

The role of hypoxia in inflammatory disease (Review)

  • Authors:
    • John Biddlestone
    • Daniel Bandarra
    • Sonia Rocha
  • View Affiliations

  • Published online on: January 27, 2015     https://doi.org/10.3892/ijmm.2015.2079
  • Pages: 859-869
  • Copyright: © Biddlestone et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Mammals have developed evolutionarily conserved programs of transcriptional response to hypoxia and inflammation. These stimuli commonly occur together in vivo and there is significant crosstalk between the transcription factors that are classically understood to respond to either hypoxia or inflammation. This crosstalk can be used to modulate the overall response to environmental stress. Several common disease processes are characterised by aberrant transcriptional programs in response to environmental stress. In this review, we discuss the current understanding of the role of the hypoxia-responsive (hypoxia-inducible factor) and inflammatory (nuclear factor-κB) transcription factor families and their crosstalk in rheumatoid arthritis, inflammatory bowel disease and colorectal cancer, with relevance for future therapies for the management of these conditions.

References

1 

Semenza GL: Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda). 24:97–106. 2009. View Article : Google Scholar

2 

Semenza GL: HIF-1 and human disease: One highly involved factor. Genes Dev. 14:1983–1991. 2000.PubMed/NCBI

3 

Perkins ND: The diverse and complex roles of NF-κB subunits in cancer. Nat Rev Cancer. 12:121–132. 2012.PubMed/NCBI

4 

Thornton RD, Lane P, Borghaei RC, Pease EA, Caro J and Mochan E: Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. Biochem J. 350:307–312. 2000. View Article : Google Scholar : PubMed/NCBI

5 

Taylor CT: Interdependent roles for hypoxia inducible factor and nuclear factor-kappaB in hypoxic inflammation. J Physiol. 586:4055–4059. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Näthke I and Rocha S: Antagonistic crosstalk between APC and HIF-1α. Cell Cycle. 10:1545–1547. 2011. View Article : Google Scholar

7 

Semenza GL and Wang GL: A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 12:5447–5454. 1992.PubMed/NCBI

8 

Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar

9 

Carroll VA and Ashcroft M: Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: Implications for targeting the HIF pathway. Cancer Res. 66:6264–6270. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Zhou J, Schmid T, Schnitzer S and Brüne B: Tumor hypoxia and cancer progression. Cancer Lett. 237:10–21. 2006. View Article : Google Scholar

11 

Patel SA and Simon MC: Biology of hypoxia-inducible factor-2alpha in development and disease. Cell Death Differ. 15:628–634. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Berkenstam A and Poellinger L: Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature. 414:550–554. 2001. View Article : Google Scholar : PubMed/NCBI

13 

Yamashita T, Ohneda O, Nagano M, et al: Abnormal heart development and lung remodeling in mice lacking the hypoxia-inducible factor-related basic helix-loop-helix PAS protein NEPAS. Mol Cell Biol. 28:1285–1297. 2008. View Article : Google Scholar :

14 

Zhang P, Yao Q, Lu L, Li Y, Chen PJ and Duan C: Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep. 6:1110–1121. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Bárdos JI and Ashcroft M: Negative and positive regulation of HIF-1: A complex network. Biochim Biophys Acta. 1755:107–120. 2005.PubMed/NCBI

16 

Rocha S: Gene regulation under low oxygen: Holding your breath for transcription. Trends Biochem Sci. 32:389–397. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Qin C, Wilson C, Blancher C, Taylor M, Safe S and Harris AL: Association of ARNT splice variants with estrogen receptor-negative breast cancer, poor induction of vascular endothelial growth factor under hypoxia, and poor prognosis. Clin Cancer Res. 7:818–823. 2001.PubMed/NCBI

18 

Kaelin WG Jr and Ratcliffe PJ: Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol Cell. 30:393–402. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Haase VH: Renal cancer: Oxygen meets metabolism. Exp Cell Res. 318:1057–1067. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Berra E, Benizri E, Ginouvès A, Volmat V, Roux D and Pouysségur J: HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 22:4082–4090. 2003. View Article : Google Scholar : PubMed/NCBI

21 

Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ and Gleadle JM: Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 279:38458–38465. 2004. View Article : Google Scholar : PubMed/NCBI

22 

Epstein AC, Gleadle JM, McNeill LA, et al: C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 107:43–54. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Fandrey J, Gorr TA and Gassmann M: Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res. 71:642–651. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Bruegge K, Jelkmann W and Metzen E: Hydroxylation of hypoxia-inducible transcription factors and chemical compounds targeting the HIF-alpha hydroxylases. Curr Med Chem. 14:1853–1862. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Frede S, Stockmann C, Freitag P and Fandrey J: Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. Biochem J. 396:517–527. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS and Kaelin WG Jr: HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science. 292:464–468. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Jaakkola P, Mole DR, Tian YM, et al: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292:468–472. 2001. View Article : Google Scholar : PubMed/NCBI

28 

Yu F, White SB, Zhao Q and Lee FS: HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA. 98:9630–9635. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Durán RV, MacKenzie ED, Boulahbel H, Frezza C, Heiserich L, Tardito S, Bussolati O, Rocha S, Hall MN and Gottlieb E: HIF-independent role of prolyl hydroxylases in the cellular response to amino acids. Oncogene. 32:4549–4556. 2013. View Article : Google Scholar :

30 

Moser SC, Bensaddek D, Ortmann B, Maure JF, Mudie S, Blow JJ, Lamond AI, Swedlow JR and Rocha S: PHD1 links cell-cycle progression to oxygen sensing through hydroxylation of the centrosomal protein Cep192. Dev Cell. 26:381–392. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Xie L, Pi X, Mishra A, Fong G, Peng J and Patterson C: PHD3-dependent hydroxylation of HCLK2 promotes the DNA damage response. J Clin Invest. 122:2827–2836. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Pugh CW, Tan CC, Jones RW and Ratcliffe PJ: Functional analysis of an oxygen-regulated transcriptional enhancer lying 3′ to the mouse erythropoietin gene. Proc Natl Acad Sci USA. 88:10553–10557. 1991. View Article : Google Scholar

34 

Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P and Giallongo A: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 271:32529–32537. 1996. View Article : Google Scholar : PubMed/NCBI

35 

Schödel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ and Mole DR: High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood. 117:e207–e217. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Semenza GL: Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol. 19:12–16. 2009. View Article : Google Scholar

37 

Han YH, Xia L, Song LP, Zheng Y, Chen WL, Zhang L, Huang Y, Chen GQ and Wang LS: Comparative proteomic analysis of hypoxia-treated and untreated human leukemic U937 cells. Proteomics. 6:3262–3274. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Djidja MC, Chang J, Hadjiprocopis A, et al: Identification of hypoxia-regulated proteins using MALDI-mass spectrometry imaging combined with quantitative proteomics. J Proteome Res. 13:2297–2313. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U and Bondesson M: Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell. 9:617–628. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Gordan JD, Bertout JA, Hu CJ, Diehl JA and Simon MC: HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 11:335–347. 2007. View Article : Google Scholar : PubMed/NCBI

41 

An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV and Neckers LM: Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature. 392:405–408. 1998. View Article : Google Scholar : PubMed/NCBI

42 

Perkins ND: Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 8:49–62. 2007. View Article : Google Scholar

43 

No authors listed. Celebrating 25 years of NF-κB. Nat Immunol. 12:6812011. View Article : Google Scholar

44 

Campbell KJ and Perkins ND: Regulation of NF-kappaB function. Biochem Soc Symp. 73:165–180. 2006.PubMed/NCBI

45 

Wong D, Teixeira A, Oikonomopoulos S, et al: Extensive characterization of NF-κB binding uncovers non-canonical motifs and advances the interpretation of genetic functional traits. Genome Biol. 12:R702011. View Article : Google Scholar

46 

Gilmore TD: The Rel/NF-kappaB signal transduction pathway: Introduction. Oncogene. 18:6842–6844. 1999. View Article : Google Scholar : PubMed/NCBI

47 

Chen F, Castranova V, Shi X and Demers LM: New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem. 45:7–17. 1999.PubMed/NCBI

48 

Bandarra DR and Rocha S: A tale of two transcription factors: NF-κB and HIF crosstalk. OA Mol Cell Biol. 1:62013. View Article : Google Scholar

49 

Gilmore TD: Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene. 25:6680–6684. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Perkins ND and Gilmore TD: Good cop, bad cop: The different faces of NF-kappaB. Cell Death Differ. 13:759–772. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Aggarwal BB, Takada Y, Shishodia S, Gutierrez AM, Oommen OV, Ichikawa H, Baba Y and Kumar A: Nuclear transcription factor NF-kappa B: Role in biology and medicine. Indian J Exp Biol. 42:341–353. 2004.PubMed/NCBI

52 

Hackett PH and Roach RC: High-altitude illness. N Engl J Med. 345:107–114. 2001. View Article : Google Scholar : PubMed/NCBI

53 

Hartmann G, Tschöp M, Fischer R, Bidlingmaier C, Riepl R, Tschöp K, Hautmann H, Endres S and Toepfer M: High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine. 12:246–252. 2000. View Article : Google Scholar : PubMed/NCBI

54 

Kim HL, Cho YS, Choi H, Chun YS, Lee ZH and Park JW: Hypoxia-inducible factor 1alpha is deregulated by the serum of rats with adjuvant-induced arthritis. Biochem Biophys Res Commun. 378:123–128. 2009. View Article : Google Scholar

55 

Boyd HK, Lappin TR and Bell AL: Evidence for impaired erythropoietin response to anaemia in rheumatoid disease. Br J Rheumatol. 30:255–259. 1991. View Article : Google Scholar : PubMed/NCBI

56 

Grenz A, Clambey E and Eltzschig HK: Hypoxia signaling during intestinal ischemia and inflammation. Curr Opin Crit Care. 18:178–185. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Eltzschig HK, Sitkovsky MV and Robson SC: Purinergic signaling during inflammation. N Engl J Med. 367:2322–2333. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Bandarra D, Biddlestone J, Mudie S, Muller HA and Rocha S: Hypoxia activates IKK-NF-κB and the immune response in Drosophila melanogaster. Biosci Rep. 34:342014. View Article : Google Scholar

59 

Bandarra D, Biddlestone J, Mudie S, Muller HA and Rocha S: HIF-1α restricts NF-κB dependent gene expression to control innate immunity signals. Dis Model Mech. Dec 15–2014.Epub ahead of print.

60 

van Uden P, Kenneth NS, Webster R, Müller HA, Mudie S and Rocha S: Evolutionary conserved regulation of HIF-1β by NF-κB. PLoS Genet. 7:e10012852011. View Article : Google Scholar

61 

van Uden P, Kenneth NS and Rocha S: Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J. 412:477–484. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Xue X, Ramakrishnan S, Anderson E, Taylor M, Zimmermann EM, Spence JR, Huang S, Greenson JK and Shah YM: Endothelial PAS domain protein 1 activates the inflammatory response in the intestinal epithelium to promote colitis in mice. Gastroenterology. 145:831–841. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP and Haase VH: Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J Clin Invest. 114:1098–1106. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Sewell KL and Trentham DE: Pathogenesis of rheumatoid arthritis. Lancet. 341:283–286. 1993. View Article : Google Scholar : PubMed/NCBI

65 

Al-Shukaili AK and Al-Jabri AA: Rheumatoid arthritis, cytokines and hypoxia. What is the link. Saudi Med J. 27:1642–1649. 2006.PubMed/NCBI

66 

Gaber T, Dziurla R, Tripmacher R, Burmester GR and Buttgereit F: Hypoxia inducible factor (HIF) in rheumatology: Low O2! See what HIF can do. Ann Rheum Dis. 64:971–980. 2005. View Article : Google Scholar : PubMed/NCBI

67 

Hueber W, Kidd BA, Tomooka BH, et al: Antigen microarray profiling of autoantibodies in rheumatoid arthritis. Arthritis Rheum. 52:2645–2655. 2005. View Article : Google Scholar : PubMed/NCBI

68 

van Baarsen LG, Wijbrandts CA, Rustenburg F, Cantaert T, van der Pouw Kraan TC, Baeten DL, Dijkmans BA, Tak PP and Verweij CL: Regulation of IFN response gene activity during infliximab treatment in rheumatoid arthritis is associated with clinical response to treatment. Arthritis Res Ther. 12:R112010. View Article : Google Scholar : PubMed/NCBI

69 

van Wietmarschen HA, Dai W, van der Kooij AJ, et al: Characterization of rheumatoid arthritis subtypes using symptom profiles, clinical chemistry and metabolomics measurements. PLoS One. 7:e443312012. View Article : Google Scholar : PubMed/NCBI

70 

Sweeney SE and Firestein GS: Signal transduction in rheumatoid arthritis. Curr Opin Rheumatol. 16:231–237. 2004. View Article : Google Scholar : PubMed/NCBI

71 

Morel J and Berenbaum F: Signal transduction pathways: new targets for treating rheumatoid arthritis. Joint Bone Spine. 71:503–510. 2004. View Article : Google Scholar : PubMed/NCBI

72 

Firestein GS and Manning AM: Signal transduction and transcription factors in rheumatic disease. Arthritis Rheum. 42:609–621. 1999. View Article : Google Scholar : PubMed/NCBI

73 

Benito MJ, Murphy E, Murphy EP, van den Berg WB, FitzGerald O and Bresnihan B: Increased synovial tissue NF-kappa B1 expression at sites adjacent to the cartilage-pannus junction in rheumatoid arthritis. Arthritis Rheum. 50:1781–1787. 2004. View Article : Google Scholar : PubMed/NCBI

74 

Handel ML, McMorrow LB and Gravallese EM: Nuclear factor-kappa B in rheumatoid synovium. Localization of p50 and p65. Arthritis Rheum. 38:1762–1770. 1995. View Article : Google Scholar : PubMed/NCBI

75 

Müller-Ladner U, Pap T, Gay RE, Neidhart M and Gay S: Mechanisms of disease: The molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat Clin Pract Rheumatol. 1:102–110. 2005. View Article : Google Scholar

76 

Simmonds RE and Foxwell BM: Signalling, inflammation and arthritis: NF-kappaB and its relevance to arthritis and inflammation. Rheumatology (Oxford). 47:584–590. 2008. View Article : Google Scholar

77 

Westra J, Molema G and Kallenberg CG: Hypoxia-inducible factor-1 as regulator of angiogenesis in rheumatoid arthritis -therapeutic implications. Curr Med Chem. 17:254–263. 2010. View Article : Google Scholar

78 

Ryu JH, Chae CS, Kwak JS, et al: Hypoxia-inducible factor-2α is an essential catabolic regulator of inflammatory rheumatoid arthritis. PLoS Biol. 12:e10018812014. View Article : Google Scholar

79 

Hu F, Shi L, Mu R, et al: Hypoxia-inducible factor-1α and interleukin 33 form a regulatory circuit to perpetuate the inflammation in rheumatoid arthritis. PLoS One. 8:e726502013. View Article : Google Scholar

80 

Brouwer E, Gouw AS, Posthumus MD, van Leeuwen MA, Boerboom AL, Bijzet J, Bos R, Limburg PC, Kallenberg CG and Westra J: Hypoxia inducible factor-1-alpha (HIF-1alpha) is related to both angiogenesis and inflammation in rheumatoid arthritis. Clin Exp Rheumatol. 27:945–951. 2009.

81 

Muz B, Khan MN, Kiriakidis S and Paleolog EM: Hypoxia. The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis Res Ther. 11:2012009. View Article : Google Scholar : PubMed/NCBI

82 

Moniz S, Biddlestone J and Rocha S: Grow2: The HIF system, energy homeostasis and the cell cycle. Histol Histopathol. 29:589–600. 2014.PubMed/NCBI

83 

Kenneth NS and Rocha S: Regulation of gene expression by hypoxia. Biochem J. 414:19–29. 2008. View Article : Google Scholar : PubMed/NCBI

84 

Poonam P: The biology of oral tolerance and issues related to oral vaccine design. Curr Pharm Des. 13:2001–2007. 2007. View Article : Google Scholar : PubMed/NCBI

85 

Podolsky DK: Inflammatory bowel disease. N Engl J Med. 347:417–429. 2002. View Article : Google Scholar : PubMed/NCBI

86 

Cummins EP, Doherty GA and Taylor CT: Hydroxylases as therapeutic targets in inflammatory bowel disease. Lab Invest. 93:378–383. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Abraham C and Cho JH: Inflammatory bowel disease. N Engl J Med. 361:2066–2078. 2009. View Article : Google Scholar : PubMed/NCBI

88 

Giatromanolaki A, Sivridis E, Maltezos E, Papazoglou D, Simopoulos C, Gatter KC, Harris AL and Koukourakis MI: Hypoxia inducible factor 1alpha and 2alpha overexpression in inflammatory bowel disease. J Clin Pathol. 56:209–213. 2003. View Article : Google Scholar : PubMed/NCBI

89 

Danese S, Dejana E and Fiocchi C: Immune regulation by microvascular endothelial cells: Directing innate and adaptive immunity, coagulation, and inflammation. J Immunol. 178:6017–6022. 2007. View Article : Google Scholar : PubMed/NCBI

90 

Werth N, Beerlage C, Rosenberger C, et al: Activation of hypoxia inducible factor 1 is a general phenomenon in infections with human pathogens. PLoS One. 5:e115762010. View Article : Google Scholar : PubMed/NCBI

91 

Cummins EP, Seeballuck F, Keely SJ, Mangan NE, Callanan JJ, Fallon PG and Taylor CT: The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology. 134:156–165. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Tambuwala MM, Cummins EP, Lenihan CR, et al: Loss of prolyl hydroxylase-1 protects against colitis through reduced epithelial cell apoptosis and increased barrier function. Gastroenterology. 139:2093–2101. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Louis NA, Hamilton KE, Kong T and Colgan SP: HIF-dependent induction of apical CD55 coordinates epithelial clearance of neutrophils. FASEB J. 19:950–959. 2005. View Article : Google Scholar : PubMed/NCBI

94 

Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig HK, Hansen KR, Thompson LF and Colgan SP: Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest. 110:993–1002. 2002. View Article : Google Scholar : PubMed/NCBI

95 

Kong T, Westerman KA, Faigle M, Eltzschig HK and Colgan SP: HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J. 20:2242–2250. 2006. View Article : Google Scholar : PubMed/NCBI

96 

Louis NA, Hamilton KE, Canny G, Shekels LL, Ho SB and Colgan SP: Selective induction of mucin-3 by hypoxia in intestinal epithelia. J Cell Biochem. 99:1616–1627. 2006. View Article : Google Scholar : PubMed/NCBI

97 

Furuta GT, Turner JR, Taylor CT, Hershberg RM, Comerford K, Narravula S, Podolsky DK and Colgan SP: Hypoxia-inducible factor 1-dependent induction of intestinal trefoil factor protects barrier function during hypoxia. J Exp Med. 193:1027–1034. 2001. View Article : Google Scholar : PubMed/NCBI

98 

Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC and Colgan SP: Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 62:3387–3394. 2002.PubMed/NCBI

99 

Neurath MF, Pettersson S, Meyer zum Büschenfelde KH and Strober W: Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-kappa B abrogates established experimental colitis in mice. Nat Med. 2:998–1004. 1996. View Article : Google Scholar : PubMed/NCBI

100 

Holtmann MH and Neurath MF: Differential TNF-signaling in chronic inflammatory disorders. Curr Mol Med. 4:439–444. 2004. View Article : Google Scholar : PubMed/NCBI

101 

Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF and Karin M: IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 118:285–296. 2004. View Article : Google Scholar : PubMed/NCBI

102 

Pasparakis M: IKK/NF-kappaB signaling in intestinal epithelial cells controls immune homeostasis in the gut. Mucosal Immunol. 1(Suppl 1): S54–S57. 2008. View Article : Google Scholar : PubMed/NCBI

103 

Zaph C, Troy AE, Taylor BC, et al: Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature. 446:552–556. 2007. View Article : Google Scholar : PubMed/NCBI

104 

Hauser CJ, Locke RR, Kao HW, Patterson J and Zipser RD: Visceral surface oxygen tension in experimental colitis in the rabbit. J Lab Clin Med. 112:68–71. 1988.PubMed/NCBI

105 

Shah YM, Ito S, Morimura K, et al: Hypoxia-inducible factor augments experimental colitis through an MIF-dependent inflammatory signaling cascade. Gastroenterology. 134:2036–2048. 2048 e2031–2033. 2008. View Article : Google Scholar : PubMed/NCBI

106 

Hara H and Saito T: CARD9 versus CARMA1 in innate and adaptive immunity. Trends Immunol. 30:234–242. 2009. View Article : Google Scholar : PubMed/NCBI

107 

Yang H, Minamishima YA, Yan Q, Schlisio S, Ebert BL, Zhang X, Zhang L, Kim WY, Olumi AF and Kaelin WG Jr: pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-kappaB agonist Card9 by CK2. Mol Cell. 28:15–27. 2007. View Article : Google Scholar : PubMed/NCBI

108 

Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG and Karin M: NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 453:807–811. 2008. View Article : Google Scholar : PubMed/NCBI

109 

Bracken CP, Whitelaw ML and Peet DJ: Activity of hypoxia-inducible factor 2alpha is regulated by association with the NF-kappaB essential modulator. J Biol Chem. 280:14240–14251. 2005. View Article : Google Scholar : PubMed/NCBI

110 

O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, Paquette RL and Baltimore D: Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 205:585–594. 2008. View Article : Google Scholar

111 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

112 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

113 

Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P and Jain RK: Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha--> hypoxia response element--> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 60:6248–6252. 2000.PubMed/NCBI

114 

Shay JE, Imtiyaz HZ, Sivanand S, et al: Inhibition of hypoxia-inducible factors limits tumor progression in a mouse model of colorectal cancer. Carcinogenesis. 35:1067–1077. 2014. View Article : Google Scholar : PubMed/NCBI

115 

Rawluszko-Wieczorek AA, Horbacka K, Krokowicz P, Misztal M and Jagodzinski PP: Prognostic potential of DNA methylation and transcript levels of HIF1A and EPAS1 in colorectal cancer. Mol Cancer Res. 12:1112–1127. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC and Huang LE: HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J. 23:1949–1956. 2004. View Article : Google Scholar : PubMed/NCBI

117 

Sánchez-Puig N, Veprintsev DB and Fersht AR: Binding of natively unfolded HIF-1alpha ODD domain to p53. Mol Cell. 17:11–21. 2005. View Article : Google Scholar : PubMed/NCBI

118 

Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL and Bedi A: Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev. 14:34–44. 2000.PubMed/NCBI

119 

Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY and Dewhirst MW: Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell. 8:99–110. 2005. View Article : Google Scholar : PubMed/NCBI

120 

Bertout JA, Majmundar AJ, Gordan JD, Lam JC, Ditsworth D, Keith B, Brown EJ, Nathanson KL and Simon MC: HIF2alpha inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. Proc Natl Acad Sci USA. 106:14391–14396. 2009. View Article : Google Scholar : PubMed/NCBI

121 

Volm M and Koomägi R: Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res. 20:1527–1533. 2000.PubMed/NCBI

122 

Evans AJ, Russell RC, Roche O, et al: VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Mol Cell Biol. 27:157–169. 2007. View Article : Google Scholar :

123 

Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC and Wu KJ: Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 10:295–305. 2008. View Article : Google Scholar : PubMed/NCBI

124 

Gort EH, van Haaften G, Verlaan I, et al: The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha. Oncogene. 27:1501–1510. 2008. View Article : Google Scholar

125 

Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2:442–454. 2002. View Article : Google Scholar : PubMed/NCBI

126 

Sahlgren C, Gustafsson MV, Jin S, Poellinger L and Lendahl U: Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA. 105:6392–6397. 2008. View Article : Google Scholar : PubMed/NCBI

127 

Lakatos PL and Lakatos L: Risk for colorectal cancer in ulcerative colitis: Changes, causes and management strategies. World J Gastroenterol. 14:3937–3947. 2008. View Article : Google Scholar : PubMed/NCBI

128 

Munkholm P: Review article: The incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment Pharmacol Ther. 18(Suppl 2): 1–5. 2003. View Article : Google Scholar : PubMed/NCBI

129 

Fernández-Majada V, Aguilera C, Villanueva A, et al: Nuclear IKK activity leads to dysregulated notch-dependent gene expression in colorectal cancer. Proc Natl Acad Sci USA. 104:276–281. 2007. View Article : Google Scholar :

130 

Seril DN, Liao J, Yang GY and Yang CS: Oxidative stress and ulcerative colitis-associated carcinogenesis: Studies in humans and animal models. Carcinogenesis. 24:353–362. 2003. View Article : Google Scholar : PubMed/NCBI

131 

Sangha S, Yao M and Wolfe MM: Non-steroidal anti-inflammatory drugs and colorectal cancer prevention. Postgrad Med J. 81:223–227. 2005. View Article : Google Scholar : PubMed/NCBI

132 

Hoffmeister M, Chang-Claude J and Brenner H: Do older adults using NSAIDs have a reduced risk of colorectal cancer. Drugs Aging. 23:513–523. 2006. View Article : Google Scholar

133 

Becker C, Fantini MC, Schramm C, et al: TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity. 21:491–501. 2004. View Article : Google Scholar : PubMed/NCBI

134 

Greten FR, Arkan MC, Bollrath J, et al: NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell. 130:918–931. 2007. View Article : Google Scholar : PubMed/NCBI

135 

Karin M, Cao Y, Greten FR and Li ZW: NF-kappaB in cancer: From innocent bystander to major culprit. Nat Rev Cancer. 2:301–310. 2002. View Article : Google Scholar : PubMed/NCBI

136 

Richmond A: Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol. 2:664–674. 2002. View Article : Google Scholar : PubMed/NCBI

137 

Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI

138 

Schulze-Bergkamen H and Krammer PH: Apoptosis in cancer-implications for therapy. Semin Oncol. 31:90–119. 2004. View Article : Google Scholar : PubMed/NCBI

139 

Kucharczak J, Simmons MJ, Fan Y and Gélinas C: To be, or not to be: NF-kappaB is the answer - role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene. 22:8961–8982. 2003. View Article : Google Scholar : PubMed/NCBI

140 

Luo JL, Kamata H and Karin M: IKK/NF-kappaB signaling: Balancing life and death - a new approach to cancer therapy. J Clin Invest. 115:2625–2632. 2005. View Article : Google Scholar : PubMed/NCBI

141 

Cornejo MG, Boggon TJ and Mercher T: JAK3: A two-faced player in hematological disorders. Int J Biochem Cell Biol. 41:2376–2379. 2009. View Article : Google Scholar : PubMed/NCBI

142 

Lin Q, Lai R, Chirieac LR, et al: Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: Inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol. 167:969–980. 2005. View Article : Google Scholar : PubMed/NCBI

143 

Tsareva SA, Moriggl R, Corvinus FM, Wiederanders B, Schütz A, Kovacic B and Friedrich K: Signal transducer and activator of transcription 3 activation promotes invasive growth of colon carcinomas through matrix metalloproteinase induction. Neoplasia. 9:279–291. 2007. View Article : Google Scholar : PubMed/NCBI

144 

Guttridge DC, Albanese C, Reuther JY, Pestell RG and Baldwin AS Jr: NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 19:5785–5799. 1999.PubMed/NCBI

145 

Chen C, Edelstein LC and Gélinas C: The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol. 20:2687–2695. 2000. View Article : Google Scholar : PubMed/NCBI

146 

Baldwin AS: Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest. 107:241–246. 2001. View Article : Google Scholar : PubMed/NCBI

147 

Choo MK, Sakurai H, Kim DH and Saiki I: A ginseng saponin metabolite suppresses tumor necrosis factor-α-promoted metastasis by suppressing nuclear factor-κB signaling in murine colon cancer cells. Oncol Rep. 19:595–600. 2008.PubMed/NCBI

148 

Thomasova D, Mulay SR, Bruns H and Anders HJ: p53-independent roles of MDM2 in NF-κB signaling: Implications for cancer therapy, wound healing, and autoimmune diseases. Neoplasia. 14:1097–1101. 2012.

149 

Puvvada SD, Funkhouser WK, Greene K, Deal A, Chu H, Baldwin AS, Tepper JE and O’Neil BH: NF-κB and Bcl-3 activation are prognostic in metastatic colorectal cancer. Oncology. 78:181–188. 2010. View Article : Google Scholar :

150 

Kwon HC, Kim SH, Oh SY, et al: Clinicopathological significance of nuclear factor-kappa B, HIF-1 alpha, and vascular endothelial growth factor expression in stage III colorectal cancer. Cancer Sci. 101:1557–1561. 2010. View Article : Google Scholar : PubMed/NCBI

151 

Wu Y and Zhou BP: TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 102:639–644. 2010. View Article : Google Scholar : PubMed/NCBI

152 

Schwitalla S, Ziegler PK, Horst D, et al: Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell. 23:93–106. 2013. View Article : Google Scholar : PubMed/NCBI

153 

Terzic J, Grivennikov S, Karin E and Karin M: Inflammation and colon cancer. Gastroenterology. 138:2101–2114. e21052010. View Article : Google Scholar : PubMed/NCBI

154 

Newton IP, Kenneth NS, Appleton PL, Näthke I and Rocha S: Adenomatous polyposis coli and hypoxia-inducible factor-1{alpha} have an antagonistic connection. Mol Biol Cell. 21:3630–3638. 2010. View Article : Google Scholar : PubMed/NCBI

155 

Bienz M and Clevers H: Linking colorectal cancer to Wnt signaling. Cell. 103:311–320. 2000. View Article : Google Scholar : PubMed/NCBI

156 

McCartney BM and Näthke IS: Cell regulation by the Apc protein Apc as master regulator of epithelia. Curr Opin Cell Biol. 20:186–193. 2008. View Article : Google Scholar : PubMed/NCBI

157 

Wen D, Zhang N, Shan B and Wang S: Helicobacter pylori infection may be implicated in the topography and geographic variation of upper gastrointestinal cancers in the Taihang Mountain high-risk region in northern China. Helicobacter. 15:416–421. 2010. View Article : Google Scholar : PubMed/NCBI

158 

Krüger B, Krick S, Dhillon N, et al: Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc Natl Acad Sci USA. 106:3390–3395. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2015
Volume 35 Issue 4

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Biddlestone, J., Bandarra, D., & Rocha, S. (2015). The role of hypoxia in inflammatory disease (Review). International Journal of Molecular Medicine, 35, 859-869. https://doi.org/10.3892/ijmm.2015.2079
MLA
Biddlestone, J., Bandarra, D., Rocha, S."The role of hypoxia in inflammatory disease (Review)". International Journal of Molecular Medicine 35.4 (2015): 859-869.
Chicago
Biddlestone, J., Bandarra, D., Rocha, S."The role of hypoxia in inflammatory disease (Review)". International Journal of Molecular Medicine 35, no. 4 (2015): 859-869. https://doi.org/10.3892/ijmm.2015.2079