Open Access

Role of miR-146a in human chondrocyte apoptosis in response to mechanical pressure injury in vitro

  • Authors:
    • Lei Jin
    • Jian Zhao
    • Wensen Jing
    • Shiju Yan
    • Xin Wang
    • Chun Xiao
    • Baoan Ma
  • View Affiliations

  • Published online on: June 16, 2014     https://doi.org/10.3892/ijmm.2014.1808
  • Pages: 451-463
  • Copyright: © Jin et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNA (miR)-146a is known to be overexpressed in osteoarthritis (OA). However, the role of miR-146a in OA has not yet been fully elucidated. In the present study, we applied mechanical pressure of 10 MPa to human chondrocytes for 60 min in order to investigate the expression of miR-146a and apoptosis following the mechanical pressure injury. Normal human chondrocytes were transfected with an miR-146a mimic or an inhibitor to regulate miR-146a expression. Potential target genes of miR-146a were predicted using bioinformatics. Moreover, luciferase reporter assay confirmed that Smad4 was a direct target of miR-146a. The expression levels of miR-146a, Smad4 and vascular endothelial growth factor (VEGF) were quantified by quantitative reverse transcription PCR and/or western blot analysis. The effects of miR-146a on apoptosis were detected by Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) flow cytometry. The results indicated that mechanical pressure affected chondrocyte viability and induced the early apoptosis of chondrocytes. Mechanical pressure injury increased the expression levels of miR-146a and VEGF and decreased the levels of Smad4 in the chondrocytes. In the human chondrocytes, the upregulation of miR-146a induced apoptosis, upregulated VEGF expression and downregulated Smad4 expression. In addition, the knockdown of miR-146a reduced cell apoptosis, upregulated Smad4 expression and downregulated VEGF expression. Smad4 was identified as a direct target of miR-146a by harboring a miR‑146a binding sequence in the 3'-untranslated region (3'-UTR) of its mRNA. Furthermore, the upregulation of VEGF induced by miR‑146a was mediated by Smad4 in the chondrocytes subjected to mechanical pressure injury. These results demonstrated that miR-146a was overexpressed in our chondrocyte model of experimentally induced human mechanical injury, accompanied by the upregulation of VEGF and the downregulation of Smad4 in vitro. Moreover, our data suggest that miR-146a is involved in human chondrocyte apoptosis in response to mechanical injury, and may contribute to the mechanical injury of chondrocytes, as well as to the pathogenesis of OA by increasing the levels of VEGF and damaging the transforming growth factor (TGF)-β signaling pathway through the targeted inhibition of Smad4 in cartilage.

References

1 

Ashford S and Williard J: Osteoarthritis: A review. Nurse Pract. 39:1–8. 2014. View Article : Google Scholar

2 

Anderson DD, Chubinskaya S, Guilak F, et al: Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res. 29:802–809. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Martin JA and Buckwalter JA: Post-traumatic osteoarthritis: the role of stress induced chondrocyte damage. Biorheology. 43:517–521. 2006.PubMed/NCBI

4 

Seol D, McCabe DJ, Choe H, et al: Chondrogenic progenitor cells respond to cartilage injury. Arthritis Rheum. 64:3626–3637. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Conde J, Scotece M, Gomez R, Lopez V, Gomez-Reino JJ and Gualillo O: Adipokines and osteoarthritis: novel molecules involved in the pathogenesis and progression of disease. Arthritis. 2011:2039012011. View Article : Google Scholar : PubMed/NCBI

6 

Hogrefe C, Joos H, Maheswaran V, Durselen L, Ignatius A and Brenner RE: Single impact cartilage trauma and TNF-alpha: interactive effects do not increase early cell death and indicate the need for bi-/multidirectional therapeutic approaches. Int J Mol Med. 30:1225–1232. 2012.

7 

Joos H, Hogrefe C, Rieger L, Durselen L, Ignatius A and Brenner RE: Single impact trauma in human early-stage osteoarthritic cartilage: implication of prostaglandin D2 but no additive effect of IL-1β on cell survival. Int J Mol Med. 28:271–277. 2011.PubMed/NCBI

8 

Leucht F, Durselen L, Hogrefe C, et al: Development of a new biomechanically defined single impact rabbit cartilage trauma model for in vivo-studies. J Invest Surg. 25:235–241. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Heraud F, Heraud A and Harmand MF: Apoptosis in normal and osteoarthritic human articular cartilage. Ann Rheum Dis. 59:959–965. 2000. View Article : Google Scholar : PubMed/NCBI

10 

Colwell CW Jr, D’Lima DD, Hoenecke HR, et al: In vivo changes after mechanical injury. Clin Orthop Relat Res. 391(Suppl): S116–S123. 2001. View Article : Google Scholar : PubMed/NCBI

11 

D’Lima DD, Hashimoto S, Chen PC, Colwell CW Jr and Lotz MK: Human chondrocyte apoptosis in response to mechanical injury. Osteoarthritis Cartilage. 9:712–719. 2001.PubMed/NCBI

12 

Tew SR, Kwan AP, Hann A, Thomson BM and Archer CW: The reactions of articular cartilage to experimental wounding: role of apoptosis. Arthritis Rheum. 43:215–225. 2000. View Article : Google Scholar : PubMed/NCBI

13 

D’Lima DD, Hashimoto S, Chen PC, Lotz MK and Colwell CW Jr: Cartilage injury induces chondrocyte apoptosis. J Bone Joint Surg Am. 83-A(Suppl 2): 19–21. 2001.PubMed/NCBI

14 

Saito Y, Saito H, Liang G and Friedman JM: Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review. Clin Rev Allergy Immunol. Dec 21–2013.(Epub ahead of print).

15 

Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Taganov KD, Boldin MP, Chang KJ and Baltimore D: NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 103:12481–12486. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Taganov KD, Boldin MP and Baltimore D: MicroRNAs and immunity: tiny players in a big field. Immunity. 26:133–137. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Tsai CY, Allie SR, Zhang W and Usherwood EJ: MicroRNA miR-155 affects antiviral effector and effector Memory CD8 T cell differentiation. J Virol. 87:2348–2351. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Chiyomaru T, Enokida H, Tatarano S, et al: miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. Br J Cancer. 102:883–891. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Murphy AJ, Guyre PM and Pioli PA: Estradiol suppresses NF-kappa B activation through coordinated regulation of let-7a and miR-125b in primary human macrophages. J Immunol. 184:5029–5037. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Tili E, Michaille JJ, Cimino A, et al: Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol. 179:5082–5089. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Williams AE, Perry MM, Moschos SA, Larner-Svensson HM and Lindsay MA: Role of miRNA-146a in the regulation of the innate immune response and cancer. Biochem Soc Trans. 36:1211–1215. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Miyaki S and Asahara H: Macro view of microRNA function in osteoarthritis. Nat Rev Rheumatol. 8:543–552. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Ceribelli A, Nahid MA, Satoh M and Chan EK: MicroRNAs in rheumatoid arthritis. FEBS Lett. 585:3667–3674. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Ammari M, Jorgensen C and Apparailly F: Impact of microRNAs on the understanding and treatment of rheumatoid arthritis. Curr Opin Rheumatol. 25:225–233. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Goldring MB and Marcu KB: Epigenomic and microRNA-mediated regulation in cartilage development, homeostasis, and osteoarthritis. Trends Mol Med. 18:109–118. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Okuhara A, Nakasa T, Shibuya H, et al: Changes in microRNA expression in peripheral mononuclear cells according to the progression of osteoarthritis. Mod Rheumatol. 22:446–457. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Yu C, Chen WP and Wang XH: MicroRNA in osteoarthritis. J Int Med Res. 39:1–9. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Jones SW, Watkins G, Le Good N, et al: The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis Cartilage. 17:464–472. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Iliopoulos D, Malizos KN, Oikonomou P and Tsezou A: Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One. 3:e37402008. View Article : Google Scholar

31 

Diaz-Prado S, Cicione C, Muinos-Lopez E, et al: Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord. 13:1442012. View Article : Google Scholar : PubMed/NCBI

32 

Wang JH, Shih KS, Wu YW, Wang AW and Yang CR: Histone deacetylase inhibitors increase microRNA-146a expression and enhance negative regulation of interleukin-1beta signaling in osteoarthritis fibroblast-like synoviocytes. Osteoarthritis Cartilage. 21:1987–1996. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Yamasaki K, Nakasa T, Miyaki S, et al: Expression of microRNA-146a in osteoarthritis cartilage. Arthritis Rheum. 60:1035–1041. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Nakasa T, Miyaki S, Okubo A, et al: Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 58:1284–1292. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J and Benz CC: Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene. 27:5643–5647. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Ma Baoan and Jin Lei: Multifunctional constant-temperature high pressure hydrostatic pressure loading device in in-vitro cell culture. China, utility model patent No. CN 203229539 U. Filed May 16, 2013; issued October 9, 2013.

37 

Hashimoto S, Nishiyama T, Hayashi S, et al: Role of p53 in human chondrocyte apoptosis in response to shear strain. Arthritis Rheum. 60:2340–2349. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Moon MH, Jeong JK, Lee YJ, Seol JW and Park SY: Sphingosine-1-phosphate inhibits interleukin-1β-induced inflammation in human articular chondrocytes. Int J Mol Med. 30:1451–1458. 2012.

39 

Takebe K, Nishiyama T, Hayashi S, et al: Regulation of p38 MAPK phosphorylation inhibits chondrocyte apoptosis in response to heat stress or mechanical stress. Int J Mol Med. 27:329–335. 2011.PubMed/NCBI

40 

Storch A, Burkhardt K, Ludolph AC and Schwarz J: Protective effects of riluzole on dopamine neurons: involvement of oxidative stress and cellular energy metabolism. J Neurochem. 75:2259–2269. 2000. View Article : Google Scholar : PubMed/NCBI

41 

Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res. 36:D154–D158. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Bottoni A, Zatelli MC, Ferracin M, et al: Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol. 210:370–377. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Lewis BP, Burge CB and Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120:15–20. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Weatherall JM, Mroczek K, McLaurin T, Ding B and Tejwani N: Post-traumatic ankle arthritis. Bull Hosp Jt Dis. 2013. 71:104–112. 2013.

45 

Lee JH, Fitzgerald JB, Dimicco MA and Grodzinsky AJ: Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum. 52:2386–2395. 2005. View Article : Google Scholar : PubMed/NCBI

46 

Douville NJ, Zamankhan P, Tung YC, et al: Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab Chip. 11:609–619. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Levin A, Burton-Wurster N, Chen CT and Lust G: Intercellular signaling as a cause of cell death in cyclically impacted cartilage explants. Osteoarthritis Cartilage. 9:702–711. 2001. View Article : Google Scholar : PubMed/NCBI

48 

Honda K, Ohno S, Tanimoto K, et al: The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes. Eur J Cell Biol. 79:601–609. 2000. View Article : Google Scholar : PubMed/NCBI

49 

Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Banes AJ and Guilak F: The effects of static and intermittent compression on nitric oxide production in articular cartilage explants. J Orthop Res. 19:729–737. 2001. View Article : Google Scholar : PubMed/NCBI

50 

Millward-Sadler SJ, Wright MO, Davies LW, Nuki G and Salter DM: Mechanotransduction via integrins and interleukin-4 results in altered aggrecan and matrix metalloproteinase 3 gene expression in normal, but not osteoarthritic, human articular chondrocytes. Arthritis Rheum. 43:2091–2099. 2000. View Article : Google Scholar

51 

D’Lima DD, Hashimoto S, Chen PC, Colwell CW Jr and Lotz MK: Impact of mechanical trauma on matrix and cells. Clin Orthop Relat Res. (391 Suppl): S90–S99. 2001.PubMed/NCBI

52 

Wenger R, Hans MG, Welter JF, Solchaga LA, Sheu YR and Malemud CJ: Hydrostatic pressure increases apoptosis in cartilage-constructs produced from human osteoarthritic chondrocytes. Front Biosci. 11:1690–1695. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Islam N, Haqqi TM, Jepsen KJ, et al: Hydrostatic pressure induces apoptosis in human chondrocytes from osteoarthritic cartilage through up-regulation of tumor necrosis factor-alpha, inducible nitric oxide synthase, p53, c-myc, and bax-alpha, and suppression of bcl-2. J Cell Biochem. 87:266–278. 2002. View Article : Google Scholar

54 

Sharif M, Whitehouse A, Sharman P, Perry M and Adams M: Increased apoptosis in human osteoarthritic cartilage corresponds to reduced cell density and expression of caspase-3. Arthritis Rheum. 50:507–515. 2004. View Article : Google Scholar : PubMed/NCBI

55 

Loening AM, James IE, Levenston ME, et al: Injurious mechanical compression of bovine articular cartilage induces chondrocyte apoptosis. Arch Biochem Biophys. 381:205–212. 2000. View Article : Google Scholar : PubMed/NCBI

56 

Cho YS: Perspectives on the therapeutic modulation of an alternative cell death, programmed necrosis (Review). Int J Mol Med. 33:1401–1406. 2014.PubMed/NCBI

57 

Liang W, Lin M, Li X, et al: Icariin promotes bone formation via the BMP-2/Smad4 signal transduction pathway in the hFOB 1.19 human osteoblastic cell line. Int J Mol Med. 30:889–895. 2012.PubMed/NCBI

58 

Zhang XM, Huang GW, Tian ZH, Ren DL and Wilson JX: Folate stimulates ERK1/2 phosphorylation and cell proliferation in fetal neural stem cells. Nutr Neurosci. 12:226–232. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Mebratu Y and Tesfaigzi Y: How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle. 8:1168–1175. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Imamichi Y, Waidmann O, Hein R, Eleftheriou P, Giehl K and Menke A: TGF beta-induced focal complex formation in epithelial cells is mediated by activated ERK and JNK MAP kinases and is independent of Smad4. Biol Chem. 386:225–236. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Zuscik MJ, Hilton MJ, Zhang X, Chen D and O’Keefe RJ: Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest. 118:429–438. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Chiquet M, Gelman L, Lutz R and Maier S: From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta. 1793:911–920. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Agarwal S, Deschner J, Long P, et al: Role of NF-kappaB transcription factors in antiinflammatory and proinflammatory actions of mechanical signals. Arthritis Rheum. 50:3541–3548. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Dossumbekova A, Anghelina M, Madhavan S, et al: Biomechanical signals inhibit IKK activity to attenuate NF-kappaB transcription activity in inflamed chondrocytes. Arthritis Rheum. 56:3284–3296. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Perera PM, Wypasek E, Madhavan S, et al: Mechanical signals control SOX-9, VEGF, and c-Myc expression and cell proliferation during inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytes. Arthritis Res Ther. 12:R1062010. View Article : Google Scholar

66 

Ferrara N: Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 25:581–611. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Carlevaro MF, Cermelli S, Cancedda R and Descalzi Cancedda F: Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J Cell Sci. 113:59–69. 2000.PubMed/NCBI

68 

Chen C, Sun MZ, Liu S, et al: Smad4 mediates malignant behaviors of human ovarian carcinoma cell through the effect on expressions of E-cadherin, plasminogen activator inhibitor-1 and VEGF. BMB Rep. 43:554–560. 2010. View Article : Google Scholar

69 

Schwarte-Waldhoff I and Schmiegel W: Smad4 transcriptional pathways and angiogenesis. Int J Gastrointest Cancer. 31:47–59. 2002. View Article : Google Scholar : PubMed/NCBI

70 

Schwarte-Waldhoff I, Volpert OV, Bouck NP, et al: Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA. 97:9624–9629. 2000. View Article : Google Scholar : PubMed/NCBI

71 

Chowdhury TT, Bader DL and Lee DA: Dynamic compression counteracts IL-1 beta-induced release of nitric oxide and PGE2 by superficial zone chondrocytes cultured in agarose constructs. Osteoarthritis Cartilage. 11:688–696. 2003. View Article : Google Scholar : PubMed/NCBI

72 

Nugent GE, Aneloski NM, Schmidt TA, Schumacher BL, Voegtline MS and Sah RL: Dynamic shear stimulation of bovine cartilage biosynthesis of proteoglycan 4. Arthritis Rheum. 54:1888–1896. 2006. View Article : Google Scholar : PubMed/NCBI

73 

Nam J, Aguda BD, Rath B and Agarwal S: Biomechanical thresholds regulate inflammation through the NF-kappaB pathway: experiments and modeling. PLoS One. 4:e52622009. View Article : Google Scholar : PubMed/NCBI

74 

McNulty AL, Estes BT, Wilusz RE, Weinberg JB and Guilak F: Dynamic loading enhances integrative meniscal repair in the presence of interleukin-1. Osteoarthritis Cartilage. 18:830–838. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2014
Volume 34 Issue 2

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Jin, L., Zhao, J., Jing, W., Yan, S., Wang, X., Xiao, C., & Ma, B. (2014). Role of miR-146a in human chondrocyte apoptosis in response to mechanical pressure injury in vitro. International Journal of Molecular Medicine, 34, 451-463. https://doi.org/10.3892/ijmm.2014.1808
MLA
Jin, L., Zhao, J., Jing, W., Yan, S., Wang, X., Xiao, C., Ma, B."Role of miR-146a in human chondrocyte apoptosis in response to mechanical pressure injury in vitro". International Journal of Molecular Medicine 34.2 (2014): 451-463.
Chicago
Jin, L., Zhao, J., Jing, W., Yan, S., Wang, X., Xiao, C., Ma, B."Role of miR-146a in human chondrocyte apoptosis in response to mechanical pressure injury in vitro". International Journal of Molecular Medicine 34, no. 2 (2014): 451-463. https://doi.org/10.3892/ijmm.2014.1808