From Saccharomyces cerevisiae to human: The important gene co‑expression modules

  • Authors:
    • Wei Liu
    • Li Li
    • Hua Ye
    • Haiwei Chen
    • Weibiao Shen
    • Yuexian Zhong
    • Tian Tian
    • Huaqin He
  • View Affiliations

  • Published online on: July 6, 2017     https://doi.org/10.3892/br.2017.941
  • Pages: 153-158
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Network‑based systems biology has become an important method for analyzing high‑throughput gene expression data and gene function mining. Yeast has long been a popular model organism for biomedical research. In the current study, a weighted gene co‑expression network analysis algorithm was applied to construct a gene co‑expression network in Saccharomyces cerevisiae. Seventeen stable gene co‑expression modules were detected from 2,814 S. cerevisiae microarray data. Further characterization of these modules with the Database for Annotation, Visualization and Integrated Discovery tool indicated that these modules were associated with certain biological processes, such as heat response, cell cycle, translational regulation, mitochondrion oxidative phosphorylation, amino acid metabolism and autophagy. Hub genes were also screened by intra‑modular connectivity. Finally, the module conservation was evaluated in a human disease microarray dataset. Functional modules were identified in budding yeast, some of which are associated with patient survival. The current study provided a paradigm for single cell microorganisms and potentially other organisms.

References

1 

Botstein D, Chervitz SA and Cherry JM: Yeast as a model organism. Science. 277:1259–1260. 1997. View Article : Google Scholar : PubMed/NCBI

2 

Jiang Q, Lin L and Wang T: A new model for apoptosis research: Yeast. Prog Biochem Biophys. 35:3612008.

3 

Kachroo AH, Laurent JM, Yellman CM, Meyer AG, Wilke CO and Marcotte EM: Evolution. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science. 348:921–925. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M and Edgar R: NCBI GEO: Mining tens of millions of expression profiles - database and tools update. Nucleic Acids Res. 35(Database): D760–D765. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Zhu J, Zhang B, Smith EN, Drees B, Brem RB, Kruglyak L, Bumgarner RE and Schadt EE: Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet. 40:854–861. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Guelzim N, Bottani S, Bourgine P and Képès F: Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet. 31:60–63. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Zhang B and Horvath S: A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 4:: 2005. View Article : Google Scholar : PubMed/NCBI

8 

Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, et al: NCBI GEO: Archive for functional genomics data sets − 10 years on. Nucleic Acids Res. 39(Database): D1005–D1010. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Miller JA, Horvath S and Geschwind DH: Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc Natl Acad Sci USA. 107:12698–12703. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S and Geschwind DH: Functional organization of the transcriptome in human brain. Nat Neurosci. 11:1271–1282. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Langfelder P and Horvath S: WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI

12 

Huang W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Huang W, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: The Gene Ontology Consortium: Gene ontology: Tool for the unification of biology. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Benjamini Y and Hochberg Y: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc B. 57:289–300. 1995.

16 

Langfelder P, Mischel PS and Horvath S: When is hub gene selection better than standard meta-analysis? PLoS One. 8:e615052013. View Article : Google Scholar : PubMed/NCBI

17 

Gallina I, Colding C, Henriksen P, Beli P, Nakamura K, Offman J, Mathiasen DP, Silva S, Hoffmann E, Groth A, et al: Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nat Commun. 6:65332015. View Article : Google Scholar : PubMed/NCBI

18 

Brar GA, Yassour M, Friedman N, Regev A, Ingolia NT and Weissman JS: High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science. 335:552–557. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Zhan J, Thakare D, Ma C, Lloyd A, Nixon NM, Arakaki AM, Burnett WJ, Logan KO, Wang D, Wang X, et al: RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation. Plant Cell. 27:513–531. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Liu W and Ye H: Co-expression network analysis identifies transcriptional modules in the mouse liver. Mol Genet Genomics. 289:847–853. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Liu W, Li L and Li W: Gene co-expression analysis identifies common modules related to prognosis and drug resistance in cancer cell lines. Int J Cancer. 135:2795–2803. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Childs KL, Davidson RM and Buell CR: Gene coexpression network analysis as a source of functional annotation for rice genes. PLoS One. 6:e221962011. View Article : Google Scholar : PubMed/NCBI

23 

Novick P and Botstein D: Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell. 40:405–416. 1985. View Article : Google Scholar : PubMed/NCBI

24 

Li C, Qian W, Maclean CJ and Zhang J: The fitness landscape of a tRNA gene. Science. 352:837–840. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2017
Volume 7 Issue 2

Print ISSN: 2049-9434
Online ISSN:2049-9442

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, W., Li, L., Ye, H., Chen, H., Shen, W., Zhong, Y. ... He, H. (2017). From Saccharomyces cerevisiae to human: The important gene co‑expression modules. Biomedical Reports, 7, 153-158. https://doi.org/10.3892/br.2017.941
MLA
Liu, W., Li, L., Ye, H., Chen, H., Shen, W., Zhong, Y., Tian, T., He, H."From Saccharomyces cerevisiae to human: The important gene co‑expression modules". Biomedical Reports 7.2 (2017): 153-158.
Chicago
Liu, W., Li, L., Ye, H., Chen, H., Shen, W., Zhong, Y., Tian, T., He, H."From Saccharomyces cerevisiae to human: The important gene co‑expression modules". Biomedical Reports 7, no. 2 (2017): 153-158. https://doi.org/10.3892/br.2017.941