Role of amyloid β protein receptors in mediating synaptic plasticity (Review)

  • Authors:
    • Yu Li
    • Zhongqing Sun
    • Qiaoyu Cao
    • Meiwan Chen
    • Huanmin Luo
    • Xi Lin
    • Fei Xiao
  • View Affiliations

  • Published online on: February 21, 2017     https://doi.org/10.3892/br.2017.863
  • Pages: 379-386
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

There are few diseases in modern biomedicine that have garnered as much scientific interest and public concern as Alzheimer's disease (AD). The amyloid hypothesis has become the dominant model of AD pathogenesis; however, the details of the hypothesis are changing over time. Recently, given the increasing recognition, subtle effects of amyloid β protein (Aβ) on synaptic efficacy may be critical to AD progression. Synaptic plasticity is the important neurochemical foundation of learning and memory. Recent studies have identified that soluble Aβ oligomers combine with certain receptors to impair synaptic plasticity in AD, which advanced the amyloid hypothesis. The aim of the present review was to summarize the role of Aβ‑relevant receptors in regulating synaptic plasticity and their downstream signaling cascades, which may provide novel insights into the understanding of the pathogenesis of AD and the development of therapeutic strategies to slow down the progression of AD‑associated memory decline in the early stages.

References

1 

Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu LP, Moghimi SM, Couvreur P and Andrieux K: Nanotechnologies for Alzheimer's disease: Diagnosis, therapy, and safety issues. Nanomedicine. 7:521–540. 2011.PubMed/NCBI

2 

Selkoe DJ and Hardy J: The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med. 8:595–608. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y and LaFerla FM: Triple-transgenic model of Alzheimer's disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron. 39:409–421. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Glenner GG and Wong CW: Alzheimer's disease: initial report of the purification ans characterization of a novel cerebrovascular amyloidprotein. Biochem Biophys Res Commun. 425:534–539. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Selkoe DJ: Alzheimer's disease is a synaptic failure. Science. 298:789–791. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Audrain M, Fol R, Dutar P, Potier B, Billard JM, Flament J, Alves S, Burlot MA, Dufayet-Chaffaud G, Bemelmans AP, et al: Alzheimer's disease-like APP processing in wild-type mice identifies synaptic defects as initial steps of disease progression. Mol Neurodegener. 11:52016. View Article : Google Scholar : PubMed/NCBI

7 

Lacor PN: Advances on the understanding of the origins of synaptic pathology in AD. Curr Genomics. 8:486–508. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Terry RD: Cell death or synaptic loss in Alzheimer disease. J Neuropathol Exp Neurol. 59:1118–1119. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Scheff SW, Price DA, Schmitt FA, DeKosky ST and Mufson EJ: Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology. 68:1501–1508. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Jacobsen JS, Wu CC, Redwine JM, Comery TA, Arias R, Bowlby M, Martone R, Morrison JH, Pangalos MN, Reinhart PH, et al: Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA. 103:5161–5166. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Ma T, Hoeffer CA, Capetillo-Zarate E, Yu F, Wong H, Lin MT, Tampellini D, Klann E, Blitzer RD and Gouras GK: Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer's disease. PLoS One. 5:e128452010. View Article : Google Scholar : PubMed/NCBI

12 

Ma T and Klann E: Amyloid β: Linking synaptic plasticity failure to memory disruption in Alzheimer's disease. J Neurochem. 120 Suppl 1:140–148. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Malenka RC: The long-term potential of LTP. Nat Rev Neurosci. 4:923–926. 2003. View Article : Google Scholar : PubMed/NCBI

14 

Kandel ER: The molecular biology of memory storage: A dialog between genes and synapses. Biosci Rep. 21:565–611. 2001. View Article : Google Scholar : PubMed/NCBI

15 

Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D and Ward PJ: Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science. 248:1122–1124. 1990. View Article : Google Scholar : PubMed/NCBI

16 

Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K and Müller-Hill B: The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature. 325:733–736. 1987. View Article : Google Scholar : PubMed/NCBI

17 

Selkoe DJ: The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 8:447–453. 1998. View Article : Google Scholar : PubMed/NCBI

18 

Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, et al: Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med. 14:837–842. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Walsh DM, Klyubin I, Shankar GM, Townsend M, Fadeeva JV, Betts V, Podlisny MB, Cleary JP, Ashe KH, Rowan MJ, et al: The role of cell-derived oligomers of Abeta in Alzheimer's disease and avenues for therapeutic intervention. Biochem Soc Trans. 33:1087–1090. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Hardy J and Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science. 297:353–356. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Cheng X, Wu J, Geng M and Xiong J: Role of synaptic activity in the regulation of amyloid beta levels in Alzheimer's disease. Neurobiol Aging. 35:1217–1232. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Stéphan A and Phillips AG: A case for a non-transgenic animal model of Alzheimer's disease. Genes Brain Behav. 4:157–172. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M and Ashe KH: A specific amyloid-beta protein assembly in the brain impairs memory. Nature. 440:352–357. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ and Ashe KH: Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci. 8:79–84. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ and Sabatini BL: Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci. 27:2866–2875. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Selkoe DJ: Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res. 192:106–113. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Townsend M, Shankar GM, Mehta T, Walsh DM and Selkoe DJ: Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: A potent role for trimers. J Physiol. 572:477–492. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S and Malinow R: AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron. 52:831–843. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Hanson JE, Pare JF, Deng L, Smith Y and Zhou Q: Altered GluN2B NMDA receptor function and synaptic plasticity during early pathology in the PS2APP mouse model of Alzheimer's disease. Neurobiol Dis. 74:254–262. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Jarosz-Griffiths HH, Noble E, Rushworth JV and Hooper NM: Amyloid-β Receptors: The Good, the Bad, and the Prion Protein. J Biol Chem. 291:3174–3183. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Xia M, Cheng X, Yi R, Gao D and Xiong J: The Binding Receptors of Aβ: An Alternative Therapeutic Target for Alzheimer's Disease. Mol Neurobiol. 53:455–471. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Carrell RW and Gooptu B: Conformational changes and disease - serpins, prions and Alzheimer's. Curr Opin Struct Biol. 8:799–809. 1998. View Article : Google Scholar : PubMed/NCBI

33 

Caiati MD, Safiulina VF, Fattorini G, Sivakumaran S, Legname G and Cherubini E: PrPC controls via protein kinase A the direction of synaptic plasticity in the immature hippocampus. J Neurosci. 33:2973–2983. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Glatzel M, Abela E, Maissen M and Aguzzi A: Extraneural pathologic prion protein in sporadic Creutzfeldt-Jakob disease. N Engl J Med. 349:1812–1820. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Laurén J, Gimbel DA, Nygaard HB, Gilbert JW and Strittmatter SM: Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature. 457:1128–1132. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, Biasini E, Tapella L, Colombo L, Manzoni C, Borsello T, et al: Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci USA. 107:2295–2300. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Raeber AJ, Sailer A, Hegyi I, Klein MA, Rülicke T, Fischer M, Brandner S, Aguzzi A and Weissmann C: Ectopic expression of prion protein (PrP) in T lymphocytes or hepatocytes of PrP knockout mice is insufficient to sustain prion replication. Proc Natl Acad Sci USA. 96:3987–3992. 1999. View Article : Google Scholar : PubMed/NCBI

38 

Kessels HW, Nguyen LN, Nabavi S and Malinow R: The prion protein as a receptor for amyloid beta. Nature. 466:E3–E4. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Gimbel DA, Nygaard HB, Coffey EE, Gunther EC, Laurén J, Gimbel ZA and Strittmatter SM: Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci. 30:6367–6374. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Benilova I and De Strooper B: Prion protein in Alzheimer's pathogenesis: A hot and controversial issue. EMBO Mol Med. 2:289–290. 2010. View Article : Google Scholar : PubMed/NCBI

41 

An K, Klyubin I, Kim Y, Jung JH, Mably AJ, O'Dowd ST, Lynch T, Kanmert D, Lemere CA, Finan GM, et al: Exosomes neutralize synaptic-plasticity-disrupting activity of Aβ assemblies in vivo. Mol Brain. 6:472013. View Article : Google Scholar : PubMed/NCBI

42 

Hu NW, Nicoll AJ, Zhang D, Mably AJ, O'Malley T, Purro SA, Terry C, Collinge J, Walsh DM and Rowan MJ: mGlu5 receptors and cellular prion protein mediate amyloid-β-facilitated synaptic long-term depression in vivo. Nat Commun. 5:33742014. View Article : Google Scholar : PubMed/NCBI

43 

Bitel CL, Feng Y, Souayah N and Frederikse PH: Increased expression and local accumulation of the prion protein, Alzheimer Aβ peptides, superoxide dismutase 1, and nitric oxide synthases 1 & 2 in muscle in a rabbit model of diabetes. BMC Physiol. 10:182010. View Article : Google Scholar : PubMed/NCBI

44 

Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A, Wisniewski T, Gunther EC and Strittmatter SM: Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci. 15:1227–1235. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Sivanesan S, Tan A and Rajadas J: Pathogenesis of Abeta oligomers in synaptic failure. Curr Alzheimer Res. 10:316–323. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Gerlai R: Eph receptors and neural plasticity. Nat Rev Neurosci. 2:205–209. 2001. View Article : Google Scholar : PubMed/NCBI

47 

Cissé M, Halabisky B, Harris J, Devidze N, Dubal DB, Sun B, Orr A, Lotz G, Kim DH, Hamto P, et al: Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature. 469:47–52. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Kullander K and Klein R: Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol. 3:475–486. 2002. View Article : Google Scholar : PubMed/NCBI

49 

Yamaguchi Y and Pasquale EB: Eph receptors in the adult brain. Curr Opin Neurobiol. 14:288–296. 2004. View Article : Google Scholar : PubMed/NCBI

50 

Bliss TV and Collingridge GL: A synaptic model of memory: Long-term potentiation in the hippocampus. Nature. 361:31–39. 1993. View Article : Google Scholar : PubMed/NCBI

51 

Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu L, Gale NW and Greenberg ME: EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell. 103:945–956. 2000. View Article : Google Scholar : PubMed/NCBI

52 

Drescher U: Excitation at the synapse: Eph receptors team up with NMDA receptors. Cell. 103:1005–1008. 2000. View Article : Google Scholar : PubMed/NCBI

53 

Henkemeyer M, Orioli D, Henderson JT, Saxton TM, Roder J, Pawson T and Klein R: Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell. 86:35–46. 1996. View Article : Google Scholar : PubMed/NCBI

54 

Birgbauer E, Cowan CA, Sretavan DW and Henkemeyer M: Kinase independent function of EphB receptors in retinal axon pathfinding to the optic disc from dorsal but not ventral retina. Development. 127:1231–1241. 2000.PubMed/NCBI

55 

Cowan CA, Yokoyama N, Bianchi LM, Henkemeyer M and Fritzsch B: EphB2 guides axons at the midline and is necessary for normal vestibular function. Neuron. 26:417–430. 2000. View Article : Google Scholar : PubMed/NCBI

56 

Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W and Klein R: Roles of ephrinB ligands and EphB receptors in cardiovascular development: Demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 13:295–306. 1999. View Article : Google Scholar : PubMed/NCBI

57 

Grunwald IC, Korte M, Wolfer D, Wilkinson GA, Unsicker K, Lipp HP, Bonhoeffer T and Klein R: Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron. 32:1027–1040. 2001. View Article : Google Scholar : PubMed/NCBI

58 

Henderson JT, Georgiou J, Jia Z, Robertson J, Elowe S, Roder JC and Pawson T: The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron. 32:1041–1056. 2001. View Article : Google Scholar : PubMed/NCBI

59 

Takasu MA, Dalva MB, Zigmond RE and Greenberg ME: Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science. 295:491–495. 2002. View Article : Google Scholar : PubMed/NCBI

60 

Walsh DM and Selkoe DJ: Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron. 44:181–193. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S and Malinow R: APP processing and synaptic function. Neuron. 37:925–937. 2003. View Article : Google Scholar : PubMed/NCBI

62 

Kubagawa H, Burrows PD and Cooper MD: A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. Proc Natl Acad Sci USA. 94:5261–5266. 1997. View Article : Google Scholar : PubMed/NCBI

63 

Atwal JK, Pinkston-Gosse J, Syken J, Stawicki S, Wu Y, Shatz C and Tessier-Lavigne M: PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science. 322:967–970. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Takai T: Paired immunoglobulin-like receptors and their MHC class I recognition. Immunology. 115:433–440. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Kim T, Vidal GS, Djurisic M, William CM, Birnbaum ME, Garcia KC, Hyman BT and Shatz CJ: Human LilrB2 is a β-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer's model. Science. 341:1399–1404. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Wang X, Takata T, Bai X, Ou F, Yokono K and Sakurai T: Pyruvate prevents the inhibition of the long-term potentiation induced by amyloid-β through protein phosphatase 2A inactivation. J Alzheimers Dis. 30:665–673. 2012.PubMed/NCBI

67 

Lehmann B, Schwab I, Böhm S, Lux A, Biburger M and Nimmerjahn F: FcγRIIB: A modulator of cell activation and humoral tolerance. Expert Rev Clin Immunol. 8:243–254. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Baerenwaldt A and Nimmerjahn F: Immune regulation: FcgammaRIIB - regulating the balance between protective and autoreactive immune responses. Immunol Cell Biol. 86:482–484. 2008. View Article : Google Scholar : PubMed/NCBI

69 

Bolland S and Ravetch JV: Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity. 13:277–285. 2000. View Article : Google Scholar : PubMed/NCBI

70 

Kam TI, Song S, Gwon Y, Park H, Yan JJ, Im I, Choi JW, Choi TY, Kim J, Song DK, et al: FcγRIIb mediates amyloid-β neurotoxicity and memory impairment in Alzheimer's disease. J Clin Invest. 123:2791–2802. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Fearon DT: The complement system and adaptive immunity. Semin Immunol. 10:355–361. 1998. View Article : Google Scholar : PubMed/NCBI

72 

Adolfsson O, Pihlgren M, Toni N, Varisco Y, Buccarello AL, Antoniello K, Lohmann S, Piorkowska K, Gafner V, Atwal JK, et al: An effector-reduced anti-β-amyloid (Aβ) antibody with unique aβ binding properties promotes neuroprotection and glial engulfment of Aβ. J Neurosci. 32:9677–9689. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Chen Y, Zeng J, Cen L, Chen Y, Wang X, Yao G, Wang W, Qi W and Kong K: Multiple roles of the p75 neurotrophin receptor in the nervous system. J Int Med Res. 37:281–288. 2009. View Article : Google Scholar : PubMed/NCBI

74 

Roux PP, Bhakar AL, Kennedy TE and Barker PA: The p75 neurotrophin receptor activates Akt (protein kinase B) through a phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem. 276:23097–23104. 2001. View Article : Google Scholar : PubMed/NCBI

75 

La Rosa LR, Matrone C, Ferraina C, Panico MB, Piccirilli S, Di Certo MG, Strimpakos G, Mercuri NB, Calissano P, D'Amelio M, et al: Age-related changes of hippocampal synaptic plasticity in AβPP-null mice are restored by NGF through p75NTR. J Alzheimers Dis. 33:265–272. 2013.PubMed/NCBI

76 

Yaar M, Zhai S, Panova I, Fine RE, Eisenhauer PB, Blusztajn JK and Lopez-Coviella I and Gilchrest BA: A cyclic peptide that binds p75(NTR) protects neurones from beta amyloid (1–40)-induced cell death. Neuropathol Appl Neurobiol. 33:533–543. 2007.PubMed/NCBI

77 

Yaar M, Arble BL, Stewart KB, Qureshi NH, Kowall NW and Gilchrest BA: p75NTR antagonistic cyclic peptide decreases the size of beta amyloid-induced brain inflammation. Cell Mol Neurobiol. 28:1027–1031. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Chakravarthy B, Gaudet C, Ménard M, Atkinson T, Brown L, Laferla FM, Armato U and Whitfield J: Amyloid-beta peptides stimulate the expression of the p75(NTR) neurotrophin receptor in SHSY5Y human neuroblastoma cells and AD transgenic mice. J Alzheimers Dis. 19:915–925. 2010.PubMed/NCBI

79 

Perez SE, He B, Muhammad N, Oh KJ, Fahnestock M, Ikonomovic MD and Mufson EJ: Cholinotrophic basal forebrain system alterations in 3xTg-AD transgenic mice. Neurobiol Dis. 41:338–352. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Zeng F, Lu JJ, Zhou XF and Wang YJ: Roles of p75NTR in the pathogenesis of Alzheimer's disease: A novel therapeutic target. Biochem Pharmacol. 82:1500–1509. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Wang YJ, Wang X, Lu JJ, Li QX, Gao CY, Liu XH, Sun Y, Yang M, Lim Y, Evin G, et al: p75NTR regulates Abeta deposition by increasing Abeta production but inhibiting Abeta aggregation with its extracellular domain. J Neurosci. 31:2292–2304. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Zhou XF and Wang YJ: The p75NTR extracellular domain: A potential molecule regulating the solubility and removal of amyloid-β. Prion. 5:161–163. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Costantini C, Rossi F, Formaggio E, Bernardoni R, Cecconi D and Della-Bianca V: Characterization of the signaling pathway downstream p75 neurotrophin receptor involved in beta-amyloid peptide-dependent cell death. J Mol Neurosci. 25:141–156. 2005. View Article : Google Scholar : PubMed/NCBI

84 

Knowles JK, Rajadas J, Nguyen TV, Yang T, LeMieux MC, Griend L Vander, Ishikawa C, Massa SM, Wyss-Coray T and Longo FM: The p75 neurotrophin receptor promotes amyloid-beta(1–42)-induced neuritic dystrophy in vitro and in vivo. J Neurosci. 29:10627–10637. 2009. View Article : Google Scholar : PubMed/NCBI

85 

Frade JM and López-Sánchez N: A novel hypothesis for Alzheimer disease based on neuronal tetraploidy induced by p75 (NTR). Cell Cycle. 9:1934–1941. 2010. View Article : Google Scholar : PubMed/NCBI

86 

Le Novere N and Changeux JP: Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol. 40:155–172. 1995. View Article : Google Scholar : PubMed/NCBI

87 

Nai Q, McIntosh JM and Margiotta JF: Relating neuronal nicotinic acetylcholine receptor subtypes defined by subunit composition and channel function. Mol Pharmacol. 63:311–324. 2003. View Article : Google Scholar : PubMed/NCBI

88 

Hogg RC, Raggenbass M and Bertrand D: Nicotinic acetylcholine receptors: From structure to brain function. Rev Physiol Biochem Pharmacol. 147:1–46. 2003.PubMed/NCBI

89 

Albuquerque EX, Pereira EF, Alkondon M and Rogers SW: Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol Rev. 89:73–120. 2009. View Article : Google Scholar : PubMed/NCBI

90 

Perry EK, Morris CM, Court JA, Cheng A, Fairbairn AF, McKeith IG, Irving D, Brown A and Perry RH: Alteration in nicotine binding sites in Parkinson's disease, Lewy body dementia and Alzheimer's disease: Possible index of early neuropathology. Neuroscience. 64:385–395. 1995. View Article : Google Scholar : PubMed/NCBI

91 

Frazier CJ, Rollins YD, Breese CR, Leonard S, Freedman R and Dunwiddie TV: Acetylcholine activates an alpha-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. J Neurosci. 18:1187–1195. 1998.PubMed/NCBI

92 

McQuiston AR and Madison DV: Nicotinic receptor activation excites distinct subtypes of interneurons in the rat hippocampus. J Neurosci. 19:2887–2896. 1999.PubMed/NCBI

93 

Blum S, Moore AN, Adams F and Dash PK: A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J Neurosci. 19:3535–3544. 1999.PubMed/NCBI

94 

Selcher JC, Atkins CM, Trzaskos JM, Paylor R and Sweatt JD: A necessity for MAP kinase activation in mammalian spatial learning. Learn Mem. 6:478–490. 1999. View Article : Google Scholar : PubMed/NCBI

95 

Schafe GE, Nadel NV, Sullivan GM, Harris A and LeDoux JE: Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learn Mem. 6:97–110. 1999.PubMed/NCBI

96 

Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM and Sweatt JD: The MAPK cascade is required for mammalian associative learning. Nat Neurosci. 1:602–609. 1998. View Article : Google Scholar : PubMed/NCBI

97 

Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G and Silva AJ: Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell. 79:59–68. 1994. View Article : Google Scholar : PubMed/NCBI

98 

Mills J, Charest D Laurent, Lam F, Beyreuther K, Ida N, Pelech SL and Reiner PB: Regulation of amyloid precursor protein catabolism involves the mitogen-activated protein kinase signal transduction pathway. J Neurosci. 17:9415–9422. 1997.PubMed/NCBI

99 

Criscuolo C, Accorroni A, Domenici L and Origlia N: Impaired synaptic plasticity in the visual cortex of mice lacking α7-nicotinic receptor subunit. Neuroscience. 294:166–171. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2017
Volume 6 Issue 4

Print ISSN: 2049-9434
Online ISSN:2049-9442

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Li, Y., Sun, Z., Cao, Q., Chen, M., Luo, H., Lin, X., & Xiao, F. (2017). Role of amyloid β protein receptors in mediating synaptic plasticity (Review). Biomedical Reports, 6, 379-386. https://doi.org/10.3892/br.2017.863
MLA
Li, Y., Sun, Z., Cao, Q., Chen, M., Luo, H., Lin, X., Xiao, F."Role of amyloid β protein receptors in mediating synaptic plasticity (Review)". Biomedical Reports 6.4 (2017): 379-386.
Chicago
Li, Y., Sun, Z., Cao, Q., Chen, M., Luo, H., Lin, X., Xiao, F."Role of amyloid β protein receptors in mediating synaptic plasticity (Review)". Biomedical Reports 6, no. 4 (2017): 379-386. https://doi.org/10.3892/br.2017.863