Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications (Review)

  • Authors:
    • Zhengrong Guo
    • Huanyan Peng
    • Jiwen Kang
    • Dianxing Sun
  • View Affiliations

  • Published online on: March 23, 2016     https://doi.org/10.3892/br.2016.639
  • Pages: 528-534
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Cell-penetrating peptides (CPPs), also known as protein transduction domains, are a class of diverse peptides with 5‑30 amino acids. CPPs are divided into cationic, amphipathic and hydrophobic CPPs. They are able to carry small molecules, plasmid DNA, small interfering RNA, proteins, viruses, imaging agents and other various nanoparticles across the cellular membrane, resulting in internalization of the intact cargos. However, the mechanisms of CPP internalization remain to be elucidated. Recently, CPPs have received considerable attention due to their high transduction efficiency and low cytotoxicity. These peptides have a significant potential for diagnostic and therapeutic applications, such as delivery of fluorescent or radioactive compounds for imaging, delivery of peptides and proteins for therapeutic application, and delivery of molecules into induced pluripotent stem cells for directing differentiation. The present study reviews the classifications and transduction mechanisms of CPPs, as well as their potential applications.

References

1 

Lindgren M, Hallbrink M, Prochiantz A and Langel U: Cell-penetrating peptides. Trends Pharmacol Sci. 21:99–103. 2000. View Article : Google Scholar : PubMed/NCBI

2 

Green M and Loewenstein PM: Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 55:1179–1188. 1988. View Article : Google Scholar : PubMed/NCBI

3 

Frankel AD and Pabo CO: Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 55:1189–1193. 1988. View Article : Google Scholar : PubMed/NCBI

4 

Joliot A, Pernelle C, Deagostini-Bazin H and Prochiantz A: Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci USA. 88:1864–1868. 1991. View Article : Google Scholar : PubMed/NCBI

5 

Elliott G and O'Hare P: Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell. 88:223–233. 1997. View Article : Google Scholar : PubMed/NCBI

6 

Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B and Barsoum J: Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA. 91:664–668. 1994. View Article : Google Scholar : PubMed/NCBI

7 

Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT and Weissleder R: Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol. 18:410–414. 2000. View Article : Google Scholar : PubMed/NCBI

8 

Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, Lee SK, Shankar P and Manjunath N: Transvascular delivery of small interfering RNA to the central nervous system. Nature. 448:39–43. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Jafari S, Maleki Dizaj S and Adibkia K: Cell-penetrating peptides and their analogues as novel nanocarriers for drug delivery. Bioimpacts. 5:103–111. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Milletti F: Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discov Today. 17:850–860. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L and Rothbard JB: The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proc Natl Acad Sci USA. 97:13003–13008. 2000. View Article : Google Scholar : PubMed/NCBI

12 

Mai JC, Shen H, Watkins SC, Cheng T and Robbins PD: Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J Biol Chem. 277:30208–30218. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Tunnemann G, Ter-Avetisyan G, Martin RM, Stockl M, Herrmann A and Cardoso MC: Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci. 14:469–476. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Zahid M and Robbins PD: Cell-type specific penetrating peptides: Therapeutic promises and challenges. Molecules. 20:13055–13070. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Ragin AD, Morgan RA and Chmielewski J: Cellular import mediated by nuclear localization signal Peptide sequences. Chem Biol. 9:943–948. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M and Bienert M: Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta. 1414:127–139. 1998. View Article : Google Scholar : PubMed/NCBI

17 

Deshayes S, Plénat T, Aldrian-Herrada G, Divita G, Le Grimellec C and Heitz F: Primary amphipathic cell-penetrating peptides: Structural requirements and interactions with model membranes. Biochemistry. 43:7698–7706. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Nan YH, Park IS, Hahm KS and Shin SY: Antimicrobial activity, bactericidal mechanism and LPS-neutralizing activity of the cell-penetrating peptide pVEC and its analogs. J Pept Sci. 17:812–817. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Johansson HJ, El-Andaloussi S, Holm T, Mäe M, Jänes J, Maimets T and Langel U: Characterization of a novel cytotoxic cell-penetrating peptide derived from p14ARF protein. Mol Ther. 16:115–123. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Magzoub M, Sandgren S, Lundberg P, Oglecka K, Lilja J, Wittrup A, Eriksson Göran LE, Langel U, Belting M and Gräslund A: N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis. Biochem Biophys Res Commun. 348:379–385. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Eguchi A and Dowdy SF: siRNA delivery using peptide transduction domains. Trends Pharmacol Sci. 30:341–345. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Oehlke J, Krause E, Wiesner B, Beyermann M and Bienert M: Extensive cellular uptake into endothelial cells of an amphipathic beta-sheet forming peptide. FEBS Lett. 415:196–199. 1997. View Article : Google Scholar : PubMed/NCBI

23 

Pujals S and Giralt E: Proline-rich, amphipathic cell-penetrating peptides. Adv Drug Deliv Rev. 60:473–484. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Pooga M, Hällbrink M, Zorko M and Langel U: Cell penetration by transportan. FASEB J. 12:67–77. 1998.PubMed/NCBI

25 

Schafmeister CE, Po J and Verdine GL: An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc. 122:5891–5892. 2000. View Article : Google Scholar

26 

Ochocki JD, Mullen DG, Wattenberg EV and Distefano MD: Evaluation of a cell penetrating prenylated peptide lacking an intrinsic fluorophore via in situ click reaction. Bioorg Med Chem Lett. 21:4998–5001. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Covic L, Gresser AL, Talavera J, Swift S and Kuliopulos A: Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc Natl Acad Sci USA. 99:643–648. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Gao S, Simon MJ, Hue CD, Morrison B III and Banta S: An unusual cell penetrating peptide identified using a plasmid display-based functional selection platform. ACS Chem Biol. 6:484–491. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Gao C, Mao S, Ditzel HJ, Farnaes L, Wirsching P, Lerner RA and Janda KD: A cell-penetrating peptide from a novel pVII-pIX phage-displayed random peptide library. Bioorg Med Chem. 10:4057–4065. 2002. View Article : Google Scholar : PubMed/NCBI

30 

Nakayama F, Yasuda T, Umeda S, Asada M, Imamura T, Meineke V and Akashi M: Fibroblast growth factor-12 (FGF12) translocation into intestinal epithelial cells is dependent on a novel cell-penetrating peptide domain: Involvement of internalization in the in vivo role of exogenous FGF12. J Biol Chem. 286:25823–25834. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Fonseca SB, Pereira MP and Kelley SO: Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev. 61:953–964. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Madani F, Lindberg S, Langel U, Futaki S and Graslund A: Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys. 2011:4147292011.PubMed/NCBI

33 

Choi YS and David AE: Cell penetrating peptides and the mechanisms for intracellular entry. Curr Pharm Biotechnol. 15:192–199. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Wu X and Gehring W: Cellular uptake of the Antennapedia homeodomain polypeptide by macropinocytosis. Biochem Biophys Res Commun. 443:1136–1140. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Polanco C, Samaniego JL, Castañón-González JA, Buhse T and Sordo ML: Characterization of a possible uptake mechanism of selective antibacterial peptides. Acta Biochim Pol. 60:629–633. 2013.PubMed/NCBI

36 

Vivès E, Brodin P and Lebleu B: A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 272:16010–16017. 1997. View Article : Google Scholar : PubMed/NCBI

37 

Derossi D, Joliot AH, Chassaing G and Prochiantz A: The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem. 269:10444–10450. 1994.PubMed/NCBI

38 

Veach RA, Liu D, Yao S, Chen Y, Liu XY, Downs S and Hawiger J: Receptor/transporter-independent targeting of functional peptides across the plasma membrane. J Biol Chem. 279:11425–11431. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Herce HD and Garcia AE: Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes. Proc Natl Acad Sci USA. 104:20805–20810. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Pouny Y, Rapaport D, Mor A, Nicolas P and Shai Y: Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry. 31:12416–12423. 1992. View Article : Google Scholar : PubMed/NCBI

41 

Lee MT, Hung WC, Chen FY and Huang HW: Many-body effect of antimicrobial peptides: On the correlation between lipid's spontaneous curvature and pore formation. Biophys J. 89:4006–4016. 2005. View Article : Google Scholar : PubMed/NCBI

42 

Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV and Lebleu B: Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem. 278:585–590. 2003. View Article : Google Scholar : PubMed/NCBI

43 

Vivès E, Schmidt J and Pèlegrin A: Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta. 1786:126–138. 2008.PubMed/NCBI

44 

Jones AT: Macropinocytosis: Searching for an endocytic identity and role in the uptake of cell penetrating peptides. J Cell Mol Med. 11:670–684. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Mayor S, Parton RG and Donaldson JG: Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol. 6:62014. View Article : Google Scholar

46 

Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G and Prochiantz A: Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem. 271:18188–18193. 1996. View Article : Google Scholar : PubMed/NCBI

47 

Kawamoto S, Takasu M, Miyakawa T, Morikawa R, Oda T, Futaki S and Nagao H: Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: Importance of attractive force between cell-penetrating peptides and lipid head group. J Chem Phys. 134:0951032011. View Article : Google Scholar : PubMed/NCBI

48 

Tünnemann G, Martin RM, Haupt S, Patsch C, Edenhofer F and Cardoso MC: Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB J. 20:1775–1784. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Lundberg P, El-Andaloussi S, Sütlü T, Johansson H and Langel U: Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J. 21:2664–2671. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Jones AT and Sayers EJ: Cell entry of cell penetrating peptides: tales of tails wagging dogs. J Control Release. 161:582–591. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Mueller J, Kretzschmar I, Volkmer R and Boisguerin P: Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjug Chem. 19:2363–2374. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Pysz MA, Gambhir SS and Willmann JK: Molecular imaging: Current status and emerging strategies. Clin Radiol. 65:500–516. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Condeelis J and Weissleder R: In vivo imaging in cancer. Cold Spring Harb Perspect Biol. 2:a0038482010. View Article : Google Scholar : PubMed/NCBI

54 

Walling MA, Novak JA and Shepard JRE: Quantum dots for live cell and in vivo imaging. Int J Mol Sci. 10:441–491. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Ruan G, Agrawal A, Marcus AI and Nie S: Imaging and tracking of tat peptide-conjugated quantum dots in living cells: New insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc. 129:14759–14766. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Lei Y, Tang H, Yao L, Yu R, Feng M and Zou B: Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjug Chem. 19:421–427. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Prantner AM, Sharma V, Garbow JR and Piwnica-Worms D: Synthesis and characterization of a Gd-DOTA-D-permeation peptide for magnetic resonance relaxation enhancement of intracellular targets. Mol Imaging. 2:333–341. 2003. View Article : Google Scholar : PubMed/NCBI

58 

Polyakov V, Sharma V, Dahlheimer JL, Pica CM, Luker GD and Piwnica-Worms D: Novel Tat-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy. Bioconjug Chem. 11:762–771. 2000. View Article : Google Scholar : PubMed/NCBI

59 

Jiménez-Mancilla N, Ferro-Flores G, Santos-Cuevas C, Ocampo-García B, Luna-Gutiérrez M, Azorín-Vega E, Isaac-Olivé K, Camacho-López M and Torres-García E: Multifunctional targeted therapy system based on (99m) Tc/(177) Lu-labeled gold nanoparticles-Tat(49–57)-Lys(3) -bombesin internalized in nuclei of prostate cancer cells. J Labelled Comp Radiopharm. 56:663–671. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Santos-Cuevas CL, Ferro-Flores G, Rojas-Calderón EL, García-Becerra R, Ordaz-Rosado D, de Arteaga Murphy C and Pedraza-López M: 99mTc-N2S2-Tat (49–57)-bombesin internalized in nuclei of prostate and breast cancer cells: Kinetics, dosimetry and effect on cellular proliferation. Nucl Med Commun. 32:303–313. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Weinstain R, Savariar EN, Felsen CN and Tsien RY: In vivo targeting of hydrogen peroxide by activatable cell-penetrating peptides. J Am Chem Soc. 136:874–877. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Good L, Awasthi SK, Dryselius R, Larsson O and Nielsen PE: Bactericidal antisense effects of peptide-PNA conjugates. Nat Biotechnol. 19:360–364. 2001. View Article : Google Scholar : PubMed/NCBI

63 

Deshayes S, Konate K, Aldrian G, Crombez L, Heitz F and Divita G: Structural polymorphism of non-covalent peptide-based delivery systems: Highway to cellular uptake. Biochim Biophys Acta. 1798:2304–2314. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Tan XX, Actor JK and Chen Y: Peptide nucleic acid antisense oligomer as a therapeutic strategy against bacterial infection: Proof of principle using mouse intraperitoneal infection. Antimicrob Agents Chemother. 49:3203–3207. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Tilley LD, Mellbye BL, Puckett SE, Iversen PL and Geller BL: Antisense peptide-phosphorodiamidate morpholino oligomer conjugate: Dose-response in mice infected with Escherichia coli. J Antimicrob Chemother. 59:66–73. 2007. View Article : Google Scholar : PubMed/NCBI

66 

Makarov SS: NF-kappa B in rheumatoid arthritis: A pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res. 3:200–206. 2001. View Article : Google Scholar : PubMed/NCBI

67 

Brown JD, Lin CY, Duan Q, Griffin G, Federation AJ, Paranal RM, Bair S, Newton G, Lichtman AH, Kung AL, et al: NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell. 56:219–231. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y and Hirsch EC: Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc Natl Acad Sci USA. 94:7531–7536. 1997. View Article : Google Scholar : PubMed/NCBI

69 

Karin M and Greten FR: NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 5:749–759. 2005. View Article : Google Scholar : PubMed/NCBI

70 

May MJ, D'Acquisto F, Madge LA, Glöckner J, Pober JS and Ghosh S: Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science. 289:1550–1554. 2000. View Article : Google Scholar : PubMed/NCBI

71 

Davé SH, Tilstra JS, Matsuoka K, Li F, Karrasch T, Uno JK, Sepulveda AR, Jobin C, Baldwin AS, Robbins PD and Plevy SE: Amelioration of chronic murine colitis by peptide-mediated transduction of the IkappaB kinase inhibitor NEMO binding domain peptide. J Immunol. 179:7852–7859. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Peterson JM, Kline W, Canan BD, Ricca DJ, Kaspar B, Delfín DA, DiRienzo K, Clemens PR, Robbins PD, Baldwin AS, et al: Peptide-based inhibition of NF-κB rescues diaphragm muscle contractile dysfunction in a murine model of Duchenne muscular dystrophy. Mol Med. 17:508–515. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Hegedüs R, Manea M, Orbán E, Szabó I, Kiss E, Sipos E, Halmos G and Mező G: Enhanced cellular uptake and in vitro antitumor activity of short-chain fatty acid acylated daunorubicin-GnRH-III bioconjugates. Eur J Med Chem. 56:155–165. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Pan L, Liu J, He Q, Wang L and Shi J: Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials. 34:2719–2730. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Kondo E, Saito K, Tashiro Y, Kamide K, Uno S, Furuya T, Mashita M, Nakajima K, Tsumuraya T, Kobayashi N, et al: Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems. Nat Commun. 3:9512012. View Article : Google Scholar : PubMed/NCBI

76 

Koshkaryev A, Piroyan A and Torchilin VP: Bleomycin in octaarginine-modified fusogenic liposomes results in improved tumor growth inhibition. Cancer Lett. 334:293–301. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Walker L, Perkins E, Kratz F and Raucher D: Cell penetrating peptides fused to a thermally targeted biopolymer drug carrier improve the delivery and antitumor efficacy of an acid-sensitive doxorubicin derivative. Int J Pharm. 436:825–832. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Aroui S, Mili D, Brahim S, De Waard M and Kenani A: Doxorubicin coupled to penetratin promotes apoptosis in CHO cells by a mechanism involving c-Jun NH2-terminal kinase. Biochem Biophys Res Commun. 396:908–914. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Dubikovskaya EA, Thorne SH, Pillow TH, Contag CH and Wender PA: Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc Natl Acad Sci USA. 105:12128–12133. 2008. View Article : Google Scholar : PubMed/NCBI

80 

Lindgren M, Rosenthal-Aizman K, Saar K, Eiríksdóttir E, Jiang Y, Sassian M, Ostlund P, Hällbrink M and Langel U: Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol. 71:416–425. 2006. View Article : Google Scholar : PubMed/NCBI

81 

Kanasty R, Dorkin JR, Vegas A and Anderson D: Delivery materials for siRNA therapeutics. Nat Mater. 12:967–977. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Muratovska A and Eccles MR: Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 558:63–68. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Favaro MT, de Toledo MA, Alves RF, Santos CA, Beloti LL, Janissen R, de la Torre LG, Souza AP and Azzoni AR: Development of a non-viral gene delivery vector based on the dynein light chain Rp3 and the TAT peptide. J Biotechnol. 173:10–18. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Wang HY, Chen JX, Sun YX, Deng JZ, Li C, Zhang XZ and Zhuo RX: Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. J Control Release. 155:26–33. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Schott JW, Galla M, Godinho T, Baum C and Schambach A: Viral and non-viral approaches for transient delivery of mRNA and proteins. Curr Gene Ther. 11:382–398. 2011. View Article : Google Scholar : PubMed/NCBI

86 

Eto Y, Yoshioka Y, Asavatanabodee R, Kida S, Maeda M, Mukai Y, Mizuguchi H, Kawasaki K, Okada N and Nakagawa S: Transduction of adenovirus vectors modified with cell-penetrating peptides. Peptides. 30:1548–1552. 2009. View Article : Google Scholar : PubMed/NCBI

87 

Gratton JP, Yu J, Griffith JW, Babbitt RW, Scotland RS, Hickey R, Giordano FJ and Sessa WC: Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nat Med. 9:357–362. 2003. View Article : Google Scholar : PubMed/NCBI

88 

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. 2007. View Article : Google Scholar : PubMed/NCBI

89 

Ebrahimi B: Reprogramming barriers and enhancers: Strategies to enhance the efficiency and kinetics of induced pluripotency. Cell Regen (Lond). 4:102015. View Article : Google Scholar : PubMed/NCBI

90 

Gotoh S, Ito I, Nagasaki T, Yamamoto Y, Konishi S, Korogi Y, Matsumoto H, Muro S, Hirai T, Funato M, et al: Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep. 3:394–403. 2014. View Article : Google Scholar

91 

Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, Kiryu J and Takahashi M: Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep. 2:205–218. 2014. View Article : Google Scholar

92 

Waehler R, Russell SJ and Curiel DT: Engineering targeted viral vectors for gene therapy. Nat Rev Genet. 8:573–587. 2007. View Article : Google Scholar : PubMed/NCBI

93 

Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M, et al: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 458:766–770. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

May 2016
Volume 4 Issue 5

Print ISSN: 2049-9434
Online ISSN:2049-9442

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Guo, Z., Peng, H., Kang, J., & Sun, D. (2016). Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications (Review). Biomedical Reports, 4, 528-534. https://doi.org/10.3892/br.2016.639
MLA
Guo, Z., Peng, H., Kang, J., Sun, D."Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications (Review)". Biomedical Reports 4.5 (2016): 528-534.
Chicago
Guo, Z., Peng, H., Kang, J., Sun, D."Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications (Review)". Biomedical Reports 4, no. 5 (2016): 528-534. https://doi.org/10.3892/br.2016.639