Epithelial-mesenchymal transition in liver fibrosis (Review)

  • Authors:
    • Ya‑Lei Zhao
    • Rong‑Tao Zhu
    • Yu‑Ling Sun
  • View Affiliations

  • Published online on: January 25, 2016     https://doi.org/10.3892/br.2016.578
  • Pages: 269-274
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Liver fibrosis is the result of a sustained wound healing response to sustained chronic liver injury, which includes viral, alcoholic and autoimmune hepatitis. Hepatic regeneration is the dominant outcome of liver damage. The outcomes of successful repair are the replacement of dead epithelial cells with healthy epithelial cells, and reconstruction of the normal hepatic structure and function. Prevention of the development of epithelial‑mesenchymal transition (EMT) may control and even reverse liver fibrosis. EMT is a critical process for an epithelial cell to undergo a conversion to a mesenchymal phenotype, and is believed to be an inflammation‑induced response, which may have a central role in liver fibrosis. The origin of fibrogenic cells in liver fibrosis remains controversial. Numerous studies have investigated the origin of all fibrogenic cells within the liver and the mechanism of the signaling pathways that lead to the activation of EMT programs during numerous chronic liver diseases. The present study aimed to summarize the evidence to explain the possible role of EMT in liver fibrosis.

References

1 

Bi WR, Jin CX, Xu GT and Yang CQ: Effect of alendronate sodium on the expression of mesenchymal-epithelial transition markers in mice with liver fibrosis. Exp Ther Med. 5:247–252. 2013.PubMed/NCBI

2 

Deng YH, Pu CL, Li YC, Zhu J, Xiang C, Zhang MM and Guo CB: Analysis of biliary epithelial-mesenchymal transition in portal tract fibrogenesis in biliary atresia. Dig Dis Sci. 56:731–740. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Yoshida K and Matsuzaki K: Differential regulation of TGF-β/Smad signaling in hepatic stellate cells between acute and chronic liver injuries. Front Physiol. 3:532012. View Article : Google Scholar : PubMed/NCBI

4 

Moreno-Alvarez P, Sosa-Garrocho M, Briones-Orta MA, González-Espinosa C, Medina-Tamayo J, Molina-Jijón E, Pedraza-Chaverri J and Macías-Silva M: Angiotensin II increases mRNA levels of all TGF-beta isoforms in quiescent and activated rat hepatic stellate cells. Cell Biol Int. 34:969–978. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Lee YS and Jeong WI: Retinoic acids and hepatic stellate cells in liver disease. J Gastroenterol Hepatol. 27(Suppl 2): S75–S79. 2012. View Article : Google Scholar

6 

Rippe RA and Brenner DA: From quiescence to activation: Gene regulation in hepatic stellate cells. Gastroenterology. 127:1260–1262. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Mann J, Oakley F, Akiboye F, Elsharkawy A, Thorne AW and Mann DA: Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: Implications for wound healing and fibrogenesis. Cell Death Differ. 14:275–285. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Tsukamoto H, She H, Hazra S, Cheng J and Miyahara T: Anti-adipogenic regulation underlies hepatic stellate cell transdifferentiation. J Gastroenterol Hepatol. 21(Suppl 3): S102–S105. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Elpek GÖ: Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World J Gastroenterol. 20:7260–7276. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Fausther M, Lavoie EG and Dranoff JA: Contribution of Myofibroblasts of Different Origins to Liver Fibrosis. Curr Pathobiol Rep. 1:225–230. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Bosselut N, Housset C, Marcelo P, Rey C, Burmester T, Vinh J, Vaubourdolle M, Cadoret A and Baudin B: Distinct proteomic features of two fibrogenic liver cell populations: Hepatic stellate cells and portal myofibroblasts. Proteomics. 10:1017–1028. 2010.PubMed/NCBI

12 

Dranoff JA and Wells RG: Portal fibroblasts: Underappreciated mediators of biliary fibrosis. Hepatology. 51:1438–1444. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Uchio K, Tuchweber B, Manabe N, Gabbiani G, Rosenbaum J and Desmoulière A: Cellular retinol-binding protein-1 expression and modulation during in vivo and in vitro myofibroblastic differentiation of rat hepatic stellate cells and portal fibroblasts. Lab Invest. 82:619–628. 2002. View Article : Google Scholar : PubMed/NCBI

14 

Iwaisako K, Brenner DA and Kisseleva T: What's new in liver fibrosis? The origin of myofibroblasts in liver fibrosis. J Gastroenterol Hepatol. 27(Suppl 2): S65–S68. 2012. View Article : Google Scholar

15 

Tuchweber B, Desmoulière A, Bochaton-Piallat ML, Rubbia-Brandt L and Gabbiani G: Proliferation and phenotypic modulation of portal fibroblasts in the early stages of cholestatic fibrosis in the rat. Lab Invest. 74:265–278. 1996.PubMed/NCBI

16 

Kinnman N, Francoz C, Barbu V, Wendum D, Rey C, Hultcrantz R, Poupon R and Housset C: The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis. Lab Invest. 83:163–173. 2003. View Article : Google Scholar : PubMed/NCBI

17 

Quan TE, Cowper S, Wu SP, Bockenstedt LK and Bucala R: Circulating fibrocytes: Collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol. 36:598–606. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Strieter RM, Keeley EC, Burdick MD and Mehrad B: The role of circulating mesenchymal progenitor cells, fibrocytes, in promoting pulmonary fibrosis. Trans Am Clin Climatol Assoc. 120:49–59. 2009.PubMed/NCBI

19 

Kisseleva T, Uchinami H, Feirt N, Quintana-Bustamante O, Segovia JC, Schwabe RF and Brenner DA: Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol. 45:429–438. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Kisseleva T and Brenner DA: The phenotypic fate and functional role for bone marrow-derived stem cells in liver fibrosis. J Hepatol. 56:965–972. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Forbes SJ and Parola M: Liver fibrogenic cells. Best Pract Res Clin Gastroenterol. 25:207–217. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H and Kalluri R: Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem. 282:23337–23347. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Milani S, Herbst H, Schuppan D, Stein H and Surrenti C: Transforming growth factors beta 1 and beta 2 are differentially expressed in fibrotic liver disease. Am J Pathol. 139:1221–1229. 1991.PubMed/NCBI

24 

Pinzani M, Milani S, Herbst H, DeFranco R, Grappone C, Gentilini A, Caligiuri A, Pellegrini G, Ngo DV, Romanelli RG and Gentilini P: Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am J Pathol. 148:785–800. 1996.PubMed/NCBI

25 

Omenetti A, Porrello A, Jung Y, Yang L, Popov Y, Choi SS, Witek RP, Alpini G, Venter J and Vandongen HM: Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. J Clin Invest. 118:3331–3342. 2008.PubMed/NCBI

26 

Xia JL, Dai C, Michalopoulos GK and Liu Y: Hepatocyte growth factor attenuates liver fibrosis induced by bile duct ligation. Am J Pathol. 168:1500–1512. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Hay ED: An overview of epithelio-mesenchymal transformation. Acta Anat (Basel). 154:8–20. 1995. View Article : Google Scholar : PubMed/NCBI

28 

Zeisberg M and Neilson EG: Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 119:1429–1437. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE and Neilson EG: Identification and characterization of a fibroblast marker: FSP1. J Cell Biol. 130:393–405. 1995. View Article : Google Scholar : PubMed/NCBI

30 

Okada H, Danoff TM, Kalluri R and Neilson EG: Early role of Fsp1 in epithelial-mesenchymal transformation. Am J Physiol. 273:F563–F574. 1997.PubMed/NCBI

31 

Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F and Kalluri R: BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 9:964–968. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Lee HY, Jeon HS, Song EK, Han MK, Park SI, Lee SI, Yun HJ, Kim JR, Kim JS, Lee YC, et al: CD40 ligation of rheumatoid synovial fibroblasts regulates RANKL-mediated osteoclastogenesis: Evidence of NF-kappaB-dependent, CD40-mediated bone destruction in rheumatoid arthritis. Arthritis Rheum. 54:1747–1758. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Iwano M, Plieth D, Danoff TM, Xue C, Okada H and Neilson EG: Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 110:341–350. 2002. View Article : Google Scholar : PubMed/NCBI

34 

Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, et al: Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 13:952–961. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Potenta S, Zeisberg E and Kalluri R: The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer. 99:1375–1379. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Li Y, Wang J and Asahina K: Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial-mesenchymal transition in liver injury. Proc Natl Acad Sci USA. 110:2324–2329. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Pagan R, Martín I, Llobera M and Vilaró S: Epithelial-mesenchymal transition of cultured rat neonatal hepatocytes is differentially regulated in response to epidermal growth factor and dimethyl sulfoxide. Hepatology. 25:598–606. 1997. View Article : Google Scholar : PubMed/NCBI

38 

Valdés F, Alvarez AM, Locascio A, Vega S, Herrera B, Fernández M, Benito M, Nieto MA and Fabregat I: The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor beta in fetal rat hepatocytes. Mol Cancer Res. 1:68–78. 2002.PubMed/NCBI

39 

Sicklick JK, Choi SS, Bustamante M, McCall SJ, Pérez EH, Huang J, Li YX, Rojkind M and Diehl AM: Evidence for epithelial-mesenchymal transitions in adult liver cells. Am J Physiol Gastrointest Liver Physiol. 291:G575–G583. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Xue ZF, Wu XM and Liu M: Hepatic regeneration and the epithelial to mesenchymal transition. World J Gastroenterol. 19:1380–1386. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Yang J and Liu Y: Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J Am Soc Nephrol. 13:96–107. 2002.PubMed/NCBI

42 

Eghbali-Fatourechi G, Sieck GC, Prakash YS, Maercklein P, Gores GJ and Fitzpatrick LA: Type I procollagen production and cell proliferation is mediated by transforming growth factor-beta in a model of hepatic fibrosis. Endocrinology. 137:1894–1903. 1996. View Article : Google Scholar : PubMed/NCBI

43 

Hay ED and Zuk A: Transformations between epithelium and mesenchyme: Normal, pathological and experimentally induced. Am J Kidney Dis. 26:678–690. 1995. View Article : Google Scholar : PubMed/NCBI

44 

Huber MA, Kraut N and Beug H: Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 17:548–558. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Witzgall R, Brown D, Schwarz C and Bonventre JV: Localization of proliferating cell nuclear antigen, vimentin, c-Fos and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments and a large pool of mitotically active and dedifferentiated cells. J Clin Invest. 93:2175–2188. 1994. View Article : Google Scholar : PubMed/NCBI

46 

Klass BR, Grobbelaar AO and Rolfe KJ: Transforming growth factor beta1 signalling, wound healing and repair: A multifunctional cytokine with clinical implications for wound repair, a delicate balance. Postgrad Med J. 85:9–14. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Martin M, Lefaix J and Delanian S: TGF-beta1 and radiation fibrosis: A master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys. 47:277–290. 2000. View Article : Google Scholar : PubMed/NCBI

48 

Del Castillo G, Murillo MM, Alvarez-Barrientos A, Bertran E, Fernández M, Sánchez A and Fabregat I: Autocrine production of TGF-beta confers resistance to apoptosis after an epithelial-mesenchymal transition process in hepatocytes: Role of EGF receptor ligands. Exp Cell Res. 312:2860–2871. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL and Arteaga CL: Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 275:36803–36810. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Cicchini C, Laudadio I, Citarella F, Corazzari M, Steindler C, Conigliaro A, Fantoni A, Amicone L and Tripodi M: TGFbeta-induced EMT requires focal adhesion kinase (FAK) signaling. Exp Cell Res. 314:143–152. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Bhowmick NA, Zent R, Ghiassi M, McDonnell M and Moses HL: Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem. 276:46707–46713. 2001. View Article : Google Scholar : PubMed/NCBI

52 

Xie L, Law BK, Chytil AM, Brown KA, Aakre ME and Moses HL: Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia. 6:603–610. 2004. View Article : Google Scholar : PubMed/NCBI

53 

Zhang H, Liu L, Wang Y, Zhao G, Xie R, Liu C, Xiao X, Wu K, Nie Y, Zhang H and Fan D: KLF8 involves in TGF-beta-induced EMT and promotes invasion and migration in gastric cancer cells. J Cancer Res Clin Oncol. 139:1033–1042. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Porsch H, Bernert B, Mehić M, Theocharis AD, Heldin CH and Heldin P: Efficient TGFβ-induced epithelial-mesenchymal transition depends on hyaluronan synthase HAS2. Oncogene. 32:4355–4365. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Ding X, Park SI, McCauley LK and Wang CY: Signaling between transforming growth factor β (TGF-β) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem. 288:10241–10253. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Kim KH, Lee WR, Kang YN, Chang YC and Park KW: Inhibitory effect of nuclear factor-κB decoy oligodeoxynucleotide on liver fibrosis through regulation of the epithelial-mesenchymal transition. Hum Gene Ther. 25:721–729. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Leask A and Abraham DJ: TGF-beta signaling and the fibrotic response. FASEB J. 18:816–827. 2004. View Article : Google Scholar : PubMed/NCBI

58 

Zavadil J, Cermak L, Soto-Nieves N and Böttinger EP: Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 23:1155–1165. 2004. View Article : Google Scholar : PubMed/NCBI

59 

Park JH, Yoon J, Lee KY and Park B: Effects of geniposide on hepatocytes undergoing epithelial-mesenchymal transition in hepatic fibrosis by targeting TGFβ/Smad and ERK-MAPK signaling pathways. Biochimie. 113:26–34. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Lee WR, Kim KH, An HJ, Kim JY, Lee SJ, Han SM, Pak SC and Park KK: Apamin inhibits hepatic fibrosis through suppression of transforming growth factor β1-induced hepatocyte epithelial-mesenchymal transition. Biochem Biophys Res Commun. 450:195–201. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Wang S, Lee Y, Kim J, Hyun J, Lee K, Kim Y and Jung Y: Potential role of Hedgehog pathway in liver response to radiation. PLoS One. 8:e741412013. View Article : Google Scholar : PubMed/NCBI

62 

Ingham PW and McMahon AP: Hedgehog signaling in animal development: Paradigms and principles. Genes Dev. 15:3059–3087. 2001. View Article : Google Scholar : PubMed/NCBI

63 

van den Brink GR: Hedgehog signaling in development and homeostasis of the gastrointestinal tract. Physiol Rev. 87:1343–1375. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Varjosalo M and Taipale J: Hedgehog: Functions and mechanisms. Genes Dev. 22:2454–2472. 2008. View Article : Google Scholar : PubMed/NCBI

65 

Kahila Bar-Gal G, Kim MJ, Klein A, Shin DH, Oh CS, Kim JW, Kim TH, Kim SB, Grant PR, Pappo O, et al: Tracing hepatitis B virus to the 16th century in a Korean mummy. Hepatology. 56:1671–1680. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Choi SS, Omenetti A, Witek RP, Moylan CA, Syn WK, Jung Y, Yang L, Sudan DL, Sicklick JK, Michelotti GA, et al: Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. Am J Physiol Gastrointest Liver Physiol. 297:G1093–G1106. 2009. View Article : Google Scholar : PubMed/NCBI

67 

Kaimori A, Potter J, Kaimori JY, Wang C, Mezey E and Koteish A: Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J Biol Chem. 282:22089–22101. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Taura K, Miura K, Iwaisako K, Osterreicher CH, Kodama Y, Penz-Osterreicher M and Brenner DA: Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology. 51:1027–1036. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Lee SJ, Kim KH and Park KK: Mechanisms of fibrogenesis in liver cirrhosis: The molecular aspects of epithelial-mesenchymal transition. World J Hepatol. 6:207–216. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Scholten D, Osterreicher CH, Scholten A, Iwaisako K, Gu G, Brenner DA and Kisseleva T: Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice. Gastroenterology. 139:987–998. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

March 2016
Volume 4 Issue 3

Print ISSN: 2049-9434
Online ISSN:2049-9442

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhao, Y., Zhu, R., & Sun, Y. (2016). Epithelial-mesenchymal transition in liver fibrosis (Review). Biomedical Reports, 4, 269-274. https://doi.org/10.3892/br.2016.578
MLA
Zhao, Y., Zhu, R., Sun, Y."Epithelial-mesenchymal transition in liver fibrosis (Review)". Biomedical Reports 4.3 (2016): 269-274.
Chicago
Zhao, Y., Zhu, R., Sun, Y."Epithelial-mesenchymal transition in liver fibrosis (Review)". Biomedical Reports 4, no. 3 (2016): 269-274. https://doi.org/10.3892/br.2016.578