Application of the cell sheet technique in tissue engineering (Review)

  • Authors:
    • Guangnan Chen
    • Yiying Qi
    • Lie Niu
    • Tuoyu Di
    • Jinwei Zhong
    • Tingting Fang
    • Weiqi Yan
  • View Affiliations

  • Published online on: September 29, 2015     https://doi.org/10.3892/br.2015.522
  • Pages: 749-757
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The development and application of the tissue engineering technique has shown a significant potential in regenerative medicine. However, the limitations of conventional tissue engineering methods (cell suspensions, scaffolds and/or growth factors) restrict its application in certain fields. The novel cell sheet technique can overcome such disadvantages. Cultured cells can be harvested as intact sheets without the use of proteolytic enzymes, such as trypsin or dispase, which can result in cell damage and loss of differentiated phenotypes. The cell sheet is a complete layer, which contains extracellular matrix, ion channel, growth factor receptors, nexin and other important cell surface proteins. Mesenchymal stem cells (MSCs), which have the potential for multiple differentiation, are promising candidate seed cells for tissue engineering. The MSC sheet technique may have potential in the fields of regenerative medicine and tissue engineering in general. Additionally, induced pluripotent stem cell and embryonic stem cell‑derived cell sheets have been proposed for tissue regeneration. Currently, the application of cell sheet for tissue reconstruction includes: Direct recipient sites implantation, superposition of cell sheets to construct three‑dimensional structure for implantation, or cell sheet combined with scaffolds. The present review discusses the progress in cell sheet techniques, particularly stem cell sheet techniques, in tissue engineering.

References

1 

Thomas E, Storb R, Clift RA, Fefer A, Johnson FL, Neiman PE, Lerner KG, Glucksberg H and Buckner CD: Bone-marrow transplantation (first of two parts). N Engl J Med. 292:832–843. 1975. View Article : Google Scholar : PubMed/NCBI

2 

Vacanti CA, Bonassar LJ, Vacanti MP and Shufflebarger J: Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med. 344:1511–1514. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Qi Y, Zhao T, Xu K, Dai T and Yan W: The restoration of full-thickness cartilage defects with mesenchymal stem cells (MSCs) loaded and cross-linked bilayer collagen scaffolds on rabbit model. Mol Biol Rep. 39:1231–1237. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Poh M, Boyer M, Solan A, Dahl SL, Pedrotty D, Banik SS, McKee JA, Klinger RY, Counter CM and Niklason LE: Blood vessels engineered from human cells. Lancet. 365:2122–2124. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Atala A, Bauer SB, Soker S, Yoo JJ and Retik AB: Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 367:1241–1246. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Kushida A, Yamato M, Isoi Y, Kikuchi A and Okano T: A noninvasive transfer system for polarized renal tubule epithelial cell sheets using temperature-responsive culture dishes. Eur Cell Mater. 10:23–30. 2005.PubMed/NCBI

7 

Kushida A, Yamato M, Kikuchi A and Okano T: Two-dimensional manipulation of differentiated Madin-Darby canine kidney (MDCK) cell sheets: The noninvasive harvest from temperature-responsive culture dishes and transfer to other surfaces. J Biomed Mater Res. 54:37–46. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y and Okano T: Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J Biomed Mater Res. 45:355–362. 1999. View Article : Google Scholar : PubMed/NCBI

9 

Okano T, Yamada N, Sakai H and Sakurai Y: A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res. 27:1243–1251. 1993. View Article : Google Scholar : PubMed/NCBI

10 

Okano T, Yamada N, Okuhara M, Sakai H and Sakurai Y: Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials. 16:297–303. 1995. View Article : Google Scholar : PubMed/NCBI

11 

Itabashi Y, Miyoshi S, Kawaguchi H, Yuasa S, Tanimoto K, Furuta A, Shimizu T, Okano T, Fukuda K and Ogawa S: A new method for manufacturing cardiac cell sheets using fibrin-coated dishes and its electrophysiological studies by optical mapping. Artif Organs. 29:95–103. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Wei F, Qu C, Song T, Ding G, Fan Z, Liu D, Liu Y, Zhang C, Shi S and Wang S: Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regeneration by elevating telomerase activity. J Cell Physiol. 227:3216–3224. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Nishida K: Tissue engineering of the cornea. Cornea. 22(Suppl 7): S28–S34. 2003. View Article : Google Scholar : PubMed/NCBI

14 

Yang J, Yamato M, Nishida K, Ohki T, Kanzaki M, Sekine H, Shimizu T and Okano T: Cell delivery in regenerative medicine: The cell sheet engineering approach. J Control Release. 116:193–203. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, Yamamoto K, Nagai S, Kikuchi A, Tano Y, et al: Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation. 77:379–385. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Tsai RJ, Li LM and Chen JK: Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med. 343:86–93. 2000. View Article : Google Scholar : PubMed/NCBI

17 

Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, et al: Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 351:1187–1196. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Flores MG, Hasegawa M, Yamato M, Takagi R, Okano T and Ishikawa I: Cementum-periodontal ligament complex regeneration using the cell sheet technique. J Periodontal Res. 43:364–371. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Akizuki T, Oda S, Komaki M, Tsuchioka H, Kawakatsu N, Kikuchi A, Yamato M, Okano T and Ishikawa I: Application of periodontal ligament cell sheet for periodontal regeneration: A pilot study in beagle dogs. J Periodontal Res. 40:245–251. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Iwata T, Yamato M, Tsuchioka H, Takagi R, Mukobata S, Washio K, Okano T and Ishikawa I: Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model. Biomaterials. 30:2716–2723. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Hasegawa M, Yamato M, Kikuchi A, Okano T and Ishikawa I: Human periodontal ligament cell sheets can regenerate periodontal ligament tissue in an athymic rat model. Tissue Eng. 11:469–478. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Fabian T, Federico JA and Ponn RB: Fibrin glue in pulmonary resection: A prospective, randomized, blinded study. Ann Thorac Surg. 75:1587–1592. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Kanzaki M, Yamato M, Yang J, Sekine H, Kohno C, Takagi R, Hatakeyama H, Isaka T, Okano T and Onuki T: Dynamic sealing of lung air leaks by the transplantation of tissue engineered cell sheets. Biomaterials. 28:4294–4302. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Kanzaki M, Yamato M, Yang J, Sekine H, Takagi R, Isaka T, Okano T and Onuki T: Functional closure of visceral pleural defects by autologous tissue engineered cell sheets. Eur J Cardiothorac Surg. 34:864–869. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Asakawa N, Shimizu T, Tsuda Y, Sekiya S, Sasagawa T, Yamato M, Fukai F and Okano T: Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials. 31:3903–3909. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Shimizu T, Yamato M, Kikuchi A and Okano T: Cell sheet engineering for myocardial tissue reconstruction. Biomaterials. 24:2309–2316. 2003. View Article : Google Scholar : PubMed/NCBI

27 

Shimizu T, Sekine H, Yang J, Isoi Y, Yamato M, Kikuchi A, Kobayashi E and Okano T: Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J. 20:708–710. 2006.PubMed/NCBI

28 

Miyagawa S, Sawa Y, Sakakida S, Taketani S, Kondoh H, Memon IA, Imanishi Y, Shimizu T, Okano T and Matsuda H: Tissue cardiomyoplasty using bioengineered contractile cardiomyocyte sheets to repair damaged myocardium: Their integration with recipient myocardium. Transplantation. 80:1586–1595. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Tsumanuma Y, Iwata T, Washio K, Yoshida T, Yamada A, Takagi R, Ohno T, Lin K, Yamato M, Ishikawa I, et al: Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model. Biomaterials. 32:5819–5825. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, et al: Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 12:459–465. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Okura H, Matsuyama A, Lee CM, Saga A, Kakuta-Yamamoto A, Nagao A, Sougawa N, Sekiya N, Takekita K, Shudo Y, et al: Cardiomyoblast-like cells differentiated from human adipose tissue-derived mesenchymal stem cells improve left ventricular dysfunction and survival in a rat myocardial infarction model. Tissue Eng Part C Methods. 16:417–425. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Qi Y, Du Y, Li W, Dai X, Zhao T and Yan W: Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc. 22:1424–1433. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Qi Y and Yan W: Mesenchymal stem cell sheet encapsulated cartilage debris provides great potential for cartilage defects repair in osteoarthritis. Med Hypotheses. 79:420–421. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Dumas A, Moreau MF, Ghérardi RK, Baslé MF and Chappard D: Bone grafts cultured with bone marrow stromal cells for the repair of critical bone defects: An experimental study in mice. J Biomed Mater Res A. 90:1218–1229. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F and Okano T: Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials. 26:6415–6422. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Ouyang HW, Cao T, Zou XH, Heng BC, Wang LL, Song XH and Huang HF: Mesenchymal stem cell sheets revitalize nonviable dense grafts: Implications for repair of large-bone and tendon defects. Transplantation. 82:170–174. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Gao Z, Chen F, Zhang J, He L, Cheng X, Ma Q and Mao T: Vitalisation of tubular coral scaffolds with cell sheets for regeneration of long bones: A preliminary study in nude mice. Br J Oral Maxillofac Surg. 47:116–122. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Zhou Y, Chen F, Ho ST, Woodruff MA, Lim TM and Hutmacher DW: Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials. 28:814–824. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Zou XH, Cai HX, Yin Z, Chen X, Jiang YZ, Hu H and Ouyang HW: A novel strategy incorporated the power of mesenchymal stem cells to allografts for segmental bone tissue engineering. Cell Transplant. 18:433–441. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Qi Y, Wang Y, Yan W, Li H, Shi Z and Pan Z: Combined mesenchymal stem cell sheets and rhBMP-2-releasing calcium sulfate-rhBMP-2 scaffolds for segmental bone tissue engineering. Cell Transplant. 21:693–705. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Qi Y, Zhao T, Yan W, Xu K, Shi Z and Wang J: Mesenchymal stem cell sheet transplantation combined with locally released simvastatin enhances bone formation in a rat tibia osteotomy model. Cytotherapy. 15:44–56. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Nakamura A, Akahane M, Shigematsu H, Tadokoro M, Morita Y, Ohgushi H, Dohi Y, Imamura T and Tanaka Y: Cell sheet transplantation of cultured mesenchymal stem cells enhances bone formation in a rat nonunion model. Bone. 46:418–424. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Ma D, Ren L, Chen F, Liu Y, Zhang J, Xue Z and Mao T: Reconstruction of rabbit critical-size calvarial defects using autologous bone marrow stromal cell sheets. Ann Plast Surg. 65:259–265. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Zhou W, Han C, Song Y, Yan X, Li D, Chai Z, Feng Z, Dong Y, Li L, Xie X, et al: The performance of bone marrow mesenchymal stem cell - implant complexes prepared by cell sheet engineering techniques. Biomaterials. 31:3212–3221. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Yu M, Zhou W, Song Y, Yu F, Li D, Na S, Zou G, Zhai M and Xie C: Development of mesenchymal stem cell-implant complexes by cultured cells sheet enhances osseointegration in type 2 diabetic rat model. Bone. 49:387–394. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Mifune Y, Matsumoto T, Takayama K, Terada S, Sekiya N, Kuroda R, Kurosaka M, Fu FH and Huard J: Tendon graft revitalization using adult anterior cruciate ligament (ACL)-derived CD34+ cell sheets for ACL reconstruction. Biomaterials. 34:5476–5487. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Lui PP, Wong OT and Lee YW: Application of tendon-derived stem cell sheet for the promotion of graft healing in anterior cruciate ligament reconstruction. Am J Sports Med. 42:681–689. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Chang CH, Chen CH, Liu HW, Whu SW, Chen SH, Tsai CL and Hsiue GH: Bioengineered periosteal progenitor cell sheets to enhance tendon-bone healing in a bone tunnel. Biomed J. 35:473–480. 2012.PubMed/NCBI

49 

Sekiya N, Tobita K, Beckman S, Okada M, Gharaibeh B, Sawa Y, Kormos RL and Huard J: Muscle-derived stem cell sheets support pump function and prevent cardiac arrhythmias in a model of chronic myocardial infarction. Mol Ther. 21:662–669. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Kamata S, Miyagawa S, Fukushima S, Nakatani S, Kawamoto A, Saito A, Harada A, Shimizu T, Daimon T, Okano T, et al: Improvement of cardiac stem cell-Sheet therapy for chronic ischemic injury by adding endothelial progenitor cell transplantation: Analysis of layer-specific regional cardiac function. Cell Transplant. 23:1305–1319. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Matsuura K, Masuda S, Haraguchi Y, Yasuda N, Shimizu T, Hagiwara N, Zandstra PW and Okano T: Creation of mouse embryonic stem cell-derived cardiac cell sheets. Biomaterials. 32:7355–7362. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Zhang W, Yang W, Liu X, Zhang L, Huang W and Zhang Y: Rapidly constructed scaffold-free embryonic stem cell sheets for ocular surface reconstruction. Scanning. 36:286–292. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Wakitani S, Takaoka K, Hattori T, Miyazawa N, Iwanaga T, Takeda S, Watanabe TK and Tanigami A: Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford). 42:162–165. 2003. View Article : Google Scholar : PubMed/NCBI

54 

Kito T, Shibata R, Ishii M, Suzuki H, Himeno T, Kataoka Y, Yamamura Y, Yamamoto T, Nishio N, Ito S, et al: iPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis. Sci Rep. 3:14182013. View Article : Google Scholar : PubMed/NCBI

55 

Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura T, Kuratani T, Daimon T, Shimizu T, et al: Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation. 126(Suppl 1): S29–S37. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Kawamura M, Miyagawa S, Fukushima S, Saito A, Miki K, Ito E, Sougawa N, Kawamura T, Daimon T, Shimizu T, et al: Enhanced survival of transplanted human induced pluripotent stem cell-derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart. Circulation. 128(Suppl 1): S87–S94. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Hibino N, Duncan DR, Nalbandian A, Yi T, Qyang Y, Shinoka T and Breuer CK: Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts. J Thorac Cardiovasc Surg. 143:696–703. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Tamama K, Kawasaki H, Kerpedjieva SS, Guan J, Ganju RK and Sen CK: Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition. J Cell Biochem. 112:804–817. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

November 2015
Volume 3 Issue 6

Print ISSN: 2049-9434
Online ISSN:2049-9442

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chen, G., Qi, Y., Niu, L., Di, T., Zhong, J., Fang, T., & Yan, W. (2015). Application of the cell sheet technique in tissue engineering (Review). Biomedical Reports, 3, 749-757. https://doi.org/10.3892/br.2015.522
MLA
Chen, G., Qi, Y., Niu, L., Di, T., Zhong, J., Fang, T., Yan, W."Application of the cell sheet technique in tissue engineering (Review)". Biomedical Reports 3.6 (2015): 749-757.
Chicago
Chen, G., Qi, Y., Niu, L., Di, T., Zhong, J., Fang, T., Yan, W."Application of the cell sheet technique in tissue engineering (Review)". Biomedical Reports 3, no. 6 (2015): 749-757. https://doi.org/10.3892/br.2015.522