Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression (Review)

  • Authors:
    • Bo Sun
    • Yantian Fang
    • Zhenyang Li
    • Zongyou Chen
    • Jianbin Xiang
  • View Affiliations

  • Published online on: July 27, 2015     https://doi.org/10.3892/br.2015.494
  • Pages: 603-610
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Currently, cancer metastases remain a major clinical problem that highlights the importance of recognition of the metastatic process in cancer diagnosis and treatment. A critical process associated with the metastasis process is the transformation of epithelial cells toward the motile mesenchymal state, a process called epithelial‑mesenchymal transition (EMT). Increasing evidence suggests the crucial role of the cytoskeleton in the EMT process. The cytoskeleton is composed of the actin cytoskeleton, the microtubule network and the intermediate filaments that provide structural design and mechanical strength that is necessary for the EMT. The dynamic reorganization of the actin cytoskeleton is a prerequisite for the morphology, migration and invasion of cancer cells. The microtubule network is the cytoskeleton that provides the driving force during cell migration. Intermediate filaments are significantly rearranged, typically switching from cytokeratin‑rich to vimentin‑rich networks during the EMT process, accompanied by a greatly enhanced cell motility capacity. In the present review, the recent novel insights into the different cytoskeleton underlying EMT are summarized. There are numerous advances in our understanding of the fundamental role of the cytoskeleton in cancer cell invasion and migration.

References

1 

Yang J and Weinberg RA: Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev Cell. 14:818–829. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Yilmaz M and Christofori G: EMT, the cytoskeleton and cancer cell invasion. Cancer Metastasis Rev. 28:15–33. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Lin YC, Tsai PH, Lin CY, et al: Impact of flavonoids on matrix metalloproteinase secretion and invadopodia formation in highly invasive A431-III cancer cells. PLoS ONE. 8:e719032013. View Article : Google Scholar : PubMed/NCBI

4 

Shankar J, Messenberg A, Chan J, Underhill TM, Foster LJ and Nabi IR: Pseudopodial actin dynamics control epithelial-mesenchymal transition in metastatic cancer cells. Cancer Res. 70:3780–3790. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Taylor MA, Davuluri G, Parvani JG, Schiemann BJ, Wendt MK, Plow EF, Schiemann WP and Sossey-Alaoui K: Upregulated WAVE3 expression is essential for TGF-β-mediated EMT and metastasis of triple-negative breast cancer cells. Breast Cancer Res Treat. 142:341–353. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Lee MR and Jeon TJ: Cell migration: Regulation of cytoskeleton by Rap1 in Dictyostelium discoideum. J Microbiol. 50:555–561. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Mun H and Jeon TJ: Regulation of actin cytoskeleton by Rap1 binding to RacGEF1. Mol Cells. 34:71–76. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Lee C, Lee C, Lee S, Siu A and Ramos DM: The cytoplasmic extension of the integrin β6 subunit regulates epithelial-to-mesenchymal transition. Anticancer Res. 34:659–664. 2014.PubMed/NCBI

9 

Chan E, Saito A, Honda T and Di Guglielmo GM: The acetylenic tricyclic bis(cyano enone), TBE-31 inhibits non-small cell lung cancer cell migration through direct binding with actin. Cancer Prev Res (Phila). 7:727–737. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Shagieva GS, Domnina LV, Chipysheva TA, Ermilova VD, Chaponnier C and Dugina VB: Actin isoforms and reorganization of adhesion junctions in epithelial-to-mesenchymal transition of cervical carcinoma cells. Biochemistry (Mosc). 77:1266–1276. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Nakashima J, Liao F, Sparks JA, Tang Y and Blancaflor EB: The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity. Plant Biol Stuttg. 16 (Suppl 1):142–150. 2014. View Article : Google Scholar : PubMed/NCBI

12 

DelToro F, Fernández FT, Tilsner J, Wright KM, Tenllado F, Chung BN, Praveen S and Canto T: Potato virus Y HCPro localization at distinct, dynamically related and environment-influenced structures in the cell cytoplasm. Mol Plant Microbe Interact. 27:1331–1343. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Visegrády B, Lorinczy D, Hild G, Somogyi B and Nyitrai M: A simple model for the cooperative stabilisation of actin filaments by phalloidin and jasplakinolide. FEBS Lett. 579:6–10. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Anderson TW, Vaughan AN and Cramer LP: Retrograde flow and myosin II activity within the leading cell edge deliver F-actin to the lamella to seed the formation of graded polarity actomyosin II filament bundles in migrating fibroblasts. Mol Biol Cell. 19:5006–5018. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Nürnberg A, Kitzing T and Grosse R: Nucleating actin for invasion. Nat Rev Cancer. 11:177–187. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Henry WI, Dubois J and Quick QA: The microtubule inhibiting agent epothilone B antagonizes glioma cell motility associated with reorganization of the actin-binding protein α-actinin 4. Oncol Rep. 25:887–893. 2011.PubMed/NCBI

17 

Bamburg JR: Proteins of the ADF/cofilin family: Essential regulators of actin dynamics. Annu Rev Cell Dev Biol. 15:185–230. 1999. View Article : Google Scholar : PubMed/NCBI

18 

Vlecken DH and Bagowski CP: LIMK1 and LIMK2 are important for metastatic behavior and tumor cell-induced angiogenesis of pancreatic cancer cells. Zebrafish. 6:433–439. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Guarino M: Src signaling in cancer invasion. J Cell Physiol. 223:14–26. 2010.PubMed/NCBI

20 

Shibue T, Brooks MW, Inan MF, Reinhardt F and Weinberg RA: The outgrowth of micrometastases is enabled by the formation of filopodium-like protrusions. Cancer Discov. 2:706–721. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Mellor H: The role of formins in filopodia formation. Biochim Biophys Acta. 1803:191–200. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Hotulainen P, Llano O, Smirnov S, Tanhuanpää K, Faix J, Rivera C and Lappalainen P: Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol. 185:323–339. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Wilhelm K: Roentgenological follow-up studies of silicone joint surface replacement in hand surgery as exemplified by scaphoid total and partial prosthesis. Handchir Mikrochir Plast Chir. 22:177–182. 1990.(In German). PubMed/NCBI

24 

Gervasi M, BianchiSmiraglia A, Cummings M, Zheng Q, Wang D, Liu S and Bakin AV: JunB contributes to Id2 repression and the epithelial-mesenchymal transition in response to transforming growth factor-β. J Cell Biol. 196:589–603. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Safina AF, Varga AE, Bianchi A, Zheng Q, Kunnev D, Liang P and Bakin AV: Ras alters epithelial-mesenchymal transition in response to TGFbeta by reducing actin fibers and cell-matrix adhesion. Cell Cycle. 8:284–298. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Iwaya K, Oikawa K, Semba S, et al: Correlation between liver metastasis of the colocalization of actin-related protein 2 and 3 complex and WAVE2 in colorectal carcinoma. Cancer Sci. 98:992–999. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Monteiro P, Rossé C, Castro-Castro A, et al: Endosomal WASH and exocyst complexes control exocytosis of MT1-MMP at invadopodia. J Cell Biol. 203:1063–1079. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Spence HJ, Timpson P, Tang HR, Insall RH and Machesky LM: Scar/WAVE3 contributes to motility and plasticity of lamellipodial dynamics but not invasion in three dimensions. Biochem J. 448:35–42. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Helgeson LA, Prendergast JG, Wagner AR, RodnickSmith M and Nolen BJ: Interactions with actin monomers, actin filaments, and Arp2/3 complex define the roles of WASP family proteins and cortactin in coordinately regulating branched actin networks. J Biol Chem. 289:28856–28869. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Han SP, Gambin Y, Gomez GA, et al: Cortactin scaffolds Arp2/3 and WAVE2 at the epithelial zonula adherens. J Biol Chem. 289:7764–7775. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Adams JC: Fascin-1 as a biomarker and prospective therapeutic target in colorectal cancer. Expert Rev Mol Diagn. 15:41–48. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Béland MJ, Hesslein PS, Finlay CD, Faerron-Angel JE, Williams WG and Rowe RD: Noninvasive transcutaneous cardiac pacing in children. Pacing Clin Electrophysiol. 10:1262–1270. 1987. View Article : Google Scholar : PubMed/NCBI

33 

Gay O, Gilquin B, Nakamura F, et al: RefilinB (FAM101B) targets filamin A to organize perinuclear actin networks and regulates nuclear shape. Proc Natl Acad Sci USA. 108:11464–11469. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Gay O, Gilquin B, Pitaval A and Baudier J: Refilins: A link between perinuclear actin bundle dynamics and mechanosensing signaling. BioArchitecture. 1:245–249. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Vindin H and Gunning P: Cytoskeletal tropomyosins: Choreographers of actin filament functional diversity. J Muscle Res Cell Motil. 34:261–274. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Bach CT, Creed S, Zhong J, et al: Tropomyosin isoform expression regulates the transition of adhesions to determine cell speed and direction. Mol Cell Biol. 29:1506–1514. 2009. View Article : Google Scholar : PubMed/NCBI

37 

O'Neill GM, Stehn J and Gunning PW: Tropomyosins as interpreters of the signalling environment to regulate the local cytoskeleton. Semin Cancer Biol. 18:35–44. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Bach CT, Murray RZ, Owen D, Gaus K and O'Neill GM: Tropomyosin Tm5NM1 spatially restricts src kinase activity through perturbation of Rab11 vesicle trafficking. Mol Cell Biol. 34:4436–4446. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Pawlak G and Helfman DM: Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev. 11:41–47. 2001. View Article : Google Scholar : PubMed/NCBI

40 

SosseyAlaoui K, DownsKelly E, Das M, Izem L, Tubbs R and Plow EF: WAVE3, an actin remodeling protein, is regulated by the metastasis suppressor microRNA, miR-31, during the invasion-metastasis cascade. Int J Cancer. 129:1331–1343. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Sadhukhan S, Sarkar K, Taylor M, Candotti F and Vyas YM: Nuclear role of WASp in gene transcription is uncoupled from its ARP2/3-dependent cytoplasmic role in actin polymerization. J Immunol. 193:150–160. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Boczkowska M, Rebowski G, Kast DJ and Dominguez R: Structural analysis of the transitional state of Arp2/3 complex activation by two actin-bound WCAs. Nat Commun. 5:33082014. View Article : Google Scholar : PubMed/NCBI

43 

Holmes WR, Carlsson AE and Edelstein-Keshet L: Regimes of wave type patterning driven by refractory actin feedback: Transition from static polarization to dynamic wave behaviour. Phys Biol. 9:0460052012. View Article : Google Scholar : PubMed/NCBI

44 

Lai FP, Szczodrak M, Oelkers JM, et al: Cortactin promotes migration and platelet-derived growth factor-induced actin reorganization by signaling to Rho-GTPases. Mol Biol Cell. 20:3209–3223. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT and Horwitz AR: Cell migration: Integrating signals from front to back. Science. 302:1704–1709. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Oh SY, Knelson EH, Blobe GC and Mythreye K: The type III TGFβ receptor regulates filopodia formation via a Cdc42-mediated IRSp53-N-WASP interaction in epithelial cells. Biochem J. 454:79–89. 2013. View Article : Google Scholar : PubMed/NCBI

47 

ElSibai M, Pertz O, Pang H, Yip SC, Lorenz M, Symons M, Condeelis JS, Hahn KM and Backer JM: RhoA/ROCK-mediated switching between Cdc42- and Rac1-dependent protrusion in MTLn3 carcinoma cells. Exp Cell Res. 314:1540–1552. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Zhang Z, Yang M, Chen R, Su W, Li P, Chen S, Chen Z, Chen A, Li S and Hu C: IBP regulates epithelial-to-mesenchymal transition and the motility of breast cancer cells via Rac1, RhoA and Cdc42 signaling pathways. Oncogene. 33:3374–3382. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Gardberg M, Kaipio K, Lehtinen L, et al: FHOD1, a formin upregulated in epithelial-mesenchymal transition, participates in cancer cell migration and invasion. PLoS ONE. 8:e749232013. View Article : Google Scholar : PubMed/NCBI

50 

Pettee KM, Dvorak KM, NestorKalinoski AL and Eisenmann KM: An mDia2/ROCK signaling axis regulates invasive egress from epithelial ovarian cancer spheroids. PLoS ONE. 9:e903712014. View Article : Google Scholar : PubMed/NCBI

51 

Jaiswal R, Breitsprecher D, Collins A, Corrêa IR Jr, Xu MQ and Goode BL: The formin Daam1 and fascin directly collaborate to promote filopodia formation. Curr Biol. 23:1373–1379. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Takeya R and Sumimoto H: Fhos, a mammalian formin, directly binds to F-actin via a region N-terminal to the FH1 domain and forms a homotypic complex via the FH2 domain to promote actin fiber formation. J Cell Sci. 116:4567–4575. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Jurmeister S, Baumann M, Balwierz A, Keklikoglou I, Ward A, Uhlmann S, Zhang JD, Wiemann S and Sahin Ö: MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F. Mol Cell Biol. 32:633–651. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Yao Y, Gu X, Liu H, Wu G, Yuan D, Yang X and Song Y: Metadherin regulates proliferation and metastasis via actin cytoskeletal remodelling in non-small cell lung cancer. Br J Cancer. 111:355–364. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Basquin C and Sauvonnet N: Phosphoinositide 3-kinase at the crossroad between endocytosis and signaling of cytokine receptors. Commun Integr Biol. 6:e242432013. View Article : Google Scholar : PubMed/NCBI

56 

Ray A, Schatten H and Ray BK: Activation of Sp1 and its functional co-operation with serum amyloid A-activating sequence binding factor in synoviocyte cells trigger synergistic action of interleukin-1 and interleukin-6 in serum amyloid A gene expression. J Biol Chem. 274:4300–4308. 1999. View Article : Google Scholar : PubMed/NCBI

57 

Bendris N, Cheung CT, Leong HS, Lewis JD, Chambers AF, Blanchard JM and Lemmers B: Cyclin A2, a novel regulator of EMT. Cell Mol Life Sci. 71:4881–4894. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Bendris N, Arsic N, Lemmers B and Blanchard JM: Cyclin A2, Rho GTPases and EMT. Small GTPases. 3:225–228. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Whipple RA, Vitolo MI, Boggs AE, Charpentier MS, Thompson K and Martin SS: Parthenolide and costunolide reduce microtentacles and tumor cell attachment by selectively targeting detyrosinated tubulin independent from NF-κB inhibition. Breast Cancer Res. 15:R832013. View Article : Google Scholar : PubMed/NCBI

60 

Charpentier M and Martin S: Interplay of Stem Cell Characteristics, EMT and Microtentacles in Circulating Breast Tumor Cells. Cancers Basel. 5:1545–1565. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Whipple RA, Matrone MA, Cho EH, Balzer EM, Vitolo MI, Yoon JR, Ioffe OB, Tuttle KC, Yang J and Martin SS: Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement. Cancer Res. 70:8127–8137. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Oyanagi J, Ogawa T, Sato H, Higashi S and Miyazaki K: Epithelial-mesenchymal transition stimulates human cancer cells to extend microtubule-based invasive protrusions and suppresses cell growth in collagen gel. PLoS ONE. 7:e532092012. View Article : Google Scholar : PubMed/NCBI

63 

Kaneko T, Itoh TJ and Hotani H: Morphological transformation of liposomes caused by assembly of encapsulated tubulin and determination of shape by microtubule-associated proteins (MAPs). J Mol Biol. 284:1671–1681. 1998. View Article : Google Scholar : PubMed/NCBI

64 

Park I, Lee HO, Choi E, et al: Loss of BubR1 acetylation causes defects in spindle assembly checkpoint signaling and promotes tumor formation. J Cell Biol. 202:295–309. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Zhang Q, Zhai S, Li L, Li X, Jiang C, Zhang C and Yan B: P-glycoprotein-evading anti-tumor activity of a novel tubulin and HSP90 dual inhibitor in a non-small-cell lung cancer model. J Pharmacol Sci. 126:66–76. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Kamal A, Rao AV, Nayak VL, Reddy NV, Swapna K, Ramakrishna G and Alvala M: Synthesis and biological evaluation of imidazo[1,5-a]pyridine-benzimidazole hybrids as inhibitors of both tubulin polymerization and PI3K/Akt pathway. Org Biomol Chem. 12:9864–9880. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Braun A, Dang K, Buslig F, Baird MA, Davidson MW, Waterman CM and Myers KA: Rac1 and Aurora A regulate MCAK to polarize microtubule growth in migrating endothelial cells. J Cell Biol. 206:97–112. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Tian X, Tian Y, Moldobaeva N, Sarich N and Birukova AA: Microtubule dynamics control HGF-induced lung endothelial barrier enhancement. PLoS ONE. 9:e1059122014. View Article : Google Scholar : PubMed/NCBI

69 

Suzuki K and Takahashi K: Regulation of lamellipodia formation and cell invasion by CLIP-170 in invasive human breast cancer cells. Biochem Biophys Res Commun. 368:199–204. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Takahashi K and Suzuki K: Requirement of kinesin-mediated membrane transport of WAVE2 along microtubules for lamellipodia formation promoted by hepatocyte growth factor. Exp Cell Res. 314:2313–2322. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Zhao E, Amir M, Lin Y and Czaja MJ: Stathmin mediates hepatocyte resistance to death from oxidative stress by down regulating JNK. PLoS ONE. 9:e1097502014. View Article : Google Scholar : PubMed/NCBI

72 

Cassimeris L: The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol. 14:18–24. 2002. View Article : Google Scholar : PubMed/NCBI

73 

Manna T, Thrower DA, Honnappa S, Steinmetz MO and Wilson L: Regulation of microtubule dynamic instability in vitro by differentially phosphorylated stathmin. J Biol Chem. 284:15640–15649. 2009. View Article : Google Scholar : PubMed/NCBI

74 

Li N, Jiang P, Du W, Wu Z, Li C, Qiao M, Yang X and Wu M: Siva1 suppresses epithelial-mesenchymal transition and metastasis of tumor cells by inhibiting stathmin and stabilizing microtubules. Proc Natl Acad Sci USA. 108:12851–12856. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Furlan D, Sahnane N, Bernasconi B, et al: APC alterations are frequently involved in the pathogenesis of acinar cell carcinoma of the pancreas, mainly through gene loss and promoter hypermethylation. Virchows Arch. 464:553–564. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Baldwin AT and Phillips BT: The tumor suppressor APC differentially regulates multiple β-catenins through the function of axin and CKIα during C. elegans asymmetric stem cell divisions. J Cell Sci. 127:2771–2781. 2014.PubMed/NCBI

77 

Yamana N, Arakawa Y, Nishino T, et al: The Rho-mDia1 pathway regulates cell polarity and focal adhesion turnover in migrating cells through mobilizing Apc and c-Src. Mol Cell Biol. 26:6844–6858. 2006. View Article : Google Scholar : PubMed/NCBI

78 

Chang HW, Lee YS, Nam HY, et al: Knockdown of β-catenin controls both apoptotic and autophagic cell death through LKB1/AMPK signaling in head and neck squamous cell carcinoma cell lines. Cell Signal. 25:839–847. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Odenwald MA, Prosperi JR and Goss KH: APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology. BMC Cancer. 13:122013. View Article : Google Scholar : PubMed/NCBI

80 

Hoy SM: Albumin-bound paclitaxel: A review of its use for the first-line combination treatment of metastatic pancreatic cancer. Drugs. 74:1757–1768. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Meany HJ, Sackett DL, Maris JM, Ward Y, Krivoshik A, Cohn SL, Steinberg SM, Balis FM and Fox E: Clinical outcome in children with recurrent neuroblastoma treated with ABT-751 and effect of ABT-751 on proliferation of neuroblastoma cell lines and on tubulin polymerization in vitro. Pediatr Blood Cancer. 54:47–54. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Coderch C, Morreale A and Gago F: Tubulin-based structure-affinity relationships for antimitotic Vinca alkaloids. Anticancer Agents Med Chem. 12:219–225. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Shin SY, Kim JH, Yoon H, Choi YK, Koh D, Lim Y and Lee YH: Novel antimitotic activity of 2-hydroxy-4-methoxy-2′,3′-benzochalcone (HymnPro) through the inhibition of tubulin polymerization. J Agric Food Chem. 61:12588–12597. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Landowski TH, Samulitis BK and Dorr RT: The diaryl oxazole PC-046 is a tubulin-binding agent with experimental anti-tumor efficacy in hematologic cancers. Invest New Drugs. 31:1616–1625. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Li WT, Yeh TK, Song JS, et al: BPR0C305, an orally active microtubule-disrupting anticancer agent. Anticancer Drugs. 24:1047–1057. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Nicholl ID and Quinlan RA: Chaperone activity of alpha-crystallins modulates intermediate filament assembly. EMBO J. 13:945–953. 1994.PubMed/NCBI

87 

Helfand BT, Chang L and Goldman RD: Intermediate filaments are dynamic and motile elements of cellular architecture. J Cell Sci. 117:133–141. 2004. View Article : Google Scholar : PubMed/NCBI

88 

SutohYoneyama M, Hatakeyama S, Habuchi T, Inoue T, Nakamura T, Funyu T, Wiche G, Ohyama C and Tsuboi S: Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer cell invasion and extravasation for metastasis. Eur J Cell Biol. 93:157–169. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Szeverenyi I, Cassidy AJ, Chung CW, et al: The Human Intermediate Filament Database: Comprehensive information on a gene family involved in many human diseases. Hum Mutat. 29:351–360. 2008. View Article : Google Scholar : PubMed/NCBI

90 

Wettstein G, Bellaye PS, Micheau O and Bonniaud P: Small heat shock proteins and the cytoskeleton: An essential interplay for cell integrity. Int J Biochem Cell Biol. 44:1680–1686. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Johnen N, Francart ME, Thelen N, Cloes M and Thiry M: Evidence for a partial epithelial-mesenchymal transition in postnatal stages of rat auditory organ morphogenesis. Histochem Cell Biol. 138:477–488. 2012. View Article : Google Scholar : PubMed/NCBI

92 

Kim S and Coulombe PA: Intermediate filament scaffolds fulfill mechanical, organizational and signaling functions in the cytoplasm. Genes Dev. 21:1581–1597. 2007. View Article : Google Scholar : PubMed/NCBI

93 

Kim S, Kellner J, Lee CH and Coulombe PA: Interaction between the keratin cytoskeleton and eEF1Bgamma affects protein synthesis in epithelial cells. Nat Struct Mol Biol. 14:982–983. 2007. View Article : Google Scholar : PubMed/NCBI

94 

Nieminen M, Henttinen T, Merinen M, MarttilaIchihara F, Eriksson JE and Jalkanen S: Vimentin function in lymphocyte adhesion and transcellular migration. Nat Cell Biol. 8:156–162. 2006. View Article : Google Scholar : PubMed/NCBI

95 

Yamasaki T, Seki N, Yamada Y, Yoshino H, Hidaka H, Chiyomaru T, Nohata N, Kinoshita T, Nakagawa M and Enokida H: Tumor suppressive microRNA-138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. Int J Oncol. 41:805–817. 2012.PubMed/NCBI

96 

Toivola DM, Strnad P, Habtezion A and Omary MB: Intermediate filaments take the heat as stress proteins. Trends Cell Biol. 20:79–91. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Herrmann H, Strelkov SV, Burkhard P and Aebi U: Intermediate filaments: Primary determinants of cell architecture and plasticity. J Clin Invest. 119:1772–1783. 2009. View Article : Google Scholar : PubMed/NCBI

98 

Yang Z, Garcia A, Xu S, Powell DR, Vertino PM, Singh S and Marcus AI: Withania somnifera root extract inhibits mammary cancer metastasis and epithelial to mesenchymal transition. PLoS ONE. 8:e750692013. View Article : Google Scholar : PubMed/NCBI

99 

Mendez MG, Kojima S and Goldman RD: Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 24:1838–1851. 2010. View Article : Google Scholar : PubMed/NCBI

100 

Liu X, Wang C, Chen Z, Jin Y, Wang Y, Kolokythas A, Dai Y and Zhou X: MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines. Biochem J. 440:23–31. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Huang Y, Tong J, He F, Yu X, Fan L, Hu J, Tan J and Chen Z: miR-141 regulates TGF-β1-induced epithelial mesenchymal transition through repression of HIPK2 expression in renal tubular epithelial cells. Int J Mol Med. 35:311–318. 2015.PubMed/NCBI

102 

Luo W, Li S, Peng B, Ye Y, Deng X and Yao K: Embryonic stem cells markers SOX2, OCT4 and Nanog expression and their correlations with epithelial-mesenchymal transition in nasopharyngeal carcinoma. PLoS ONE. 8:e563242013. View Article : Google Scholar : PubMed/NCBI

103 

Traub P, Kühn S and Grüb S: Separation and characterization of homo and hetero-oligomers of the intermediate filament proteins desmin and vimentin. J Mol Biol. 230:837–856. 1993. View Article : Google Scholar : PubMed/NCBI

104 

Sahlgren CM, Mikhailov A, Hellman J, Chou YH, Lendahl U, Goldman RD and Eriksson JE: Mitotic reorganization of the intermediate filament protein nestin involves phosphorylation by cdc2 kinase. J Biol Chem. 276:16456–16463. 2001. View Article : Google Scholar : PubMed/NCBI

105 

Kawamoto M, Ishiwata T, Cho K, Uchida E, Korc M, Naito Z and Tajiri T: Nestin expression correlates with nerve and retroperitoneal tissue invasion in pancreatic cancer. Hum Pathol. 40:189–198. 2009. View Article : Google Scholar : PubMed/NCBI

106 

Matsuda Y, Naito Z, Kawahara K, Nakazawa N, Korc M and Ishiwata T: Nestin is a novel target for suppressing pancreatic cancer cell migration, invasion and metastasis. Cancer Biol Ther. 11:512–523. 2011. View Article : Google Scholar : PubMed/NCBI

107 

Su HT, Weng CC, Hsiao PJ, Chen LH, Kuo TL, Chen YW, Kuo KK and Cheng KH: Stem cell marker nestin is critical for TGF-β1-mediated tumor progression in pancreatic cancer. Mol Cancer Res. 11:768–779. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Christiansen JJ and Rajasekaran AK: Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66:8319–8326. 2006. View Article : Google Scholar : PubMed/NCBI

109 

Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D and Christofori G: Tumor invasion in the absence of epithelial-mesenchymal transition: Podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell. 9:261–272. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2015
Volume 3 Issue 5

Print ISSN: 2049-9434
Online ISSN:2049-9442

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Sun, B., Fang, Y., Li, Z., Chen, Z., & Xiang, J. (2015). Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression (Review). Biomedical Reports, 3, 603-610. https://doi.org/10.3892/br.2015.494
MLA
Sun, B., Fang, Y., Li, Z., Chen, Z., Xiang, J."Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression (Review)". Biomedical Reports 3.5 (2015): 603-610.
Chicago
Sun, B., Fang, Y., Li, Z., Chen, Z., Xiang, J."Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression (Review)". Biomedical Reports 3, no. 5 (2015): 603-610. https://doi.org/10.3892/br.2015.494