Epigenetic modifications in human thyroid cancer (Review)

  • Authors:
    • Bita Faam
    • Mohammad Ali Ghaffari
    • Ata Ghadiri
    • Fereidoun Azizi
  • View Affiliations

  • Published online on: November 3, 2014     https://doi.org/10.3892/br.2014.375
  • Pages: 3-8
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Thyroid carcinoma is the most common endocrine malignancy of the endocrine organs, and its incidence rate has steadily increased over the last decade. Over 95% of thyroid carcinoma is derived from follicular cells that have a spectrum of differentiation to the most invasive malignancy. The molecular pathogenesis of thyroid cancer remains to be clarified, although activating the RET, RAS and BRAF oncogenes have been well characterized. Increasing evidence from previous studies demonstrates that acquired epigenetic abnormalities participating with genetic alteration results in altered patterns of gene expression/function. Aberrant DNA methylation has been established in the CpG regions and microRNAs (miRNAs) expression profile recognized in cancer development. In the present review, a literature review was performed using MEDLINE and PubMed with the terms ‘epigenetic patterns in thyroid cancer [or papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), medullary thyroid cancer (MTC), anaplastic thyroid cancer (ATC)]’, ‘DNA methylation in thyroid cancer (or PTC, FTC, MTC, ATC)’, ‘miRNA expression in thyroid cancer (or PTC, FTC, MTC, ATC)’, ‘epigenetic patterns in cancer’ and the current understanding of epigenetic patterns in thyroid cancer was discussed.

References

1 

Shirazi HA, Hedayati M, Daneshpour MS, Shafiee A and Azizi F: Analysis of loss of heterozygosity effect on thyroid tumor with oxyphilia cell locus in familial non medullary thyroid carcinoma in Iranian families. Indian J Hum Genet. 18:340–343. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Patel KN and Shaha AR: Poorly differentiated and anaplastic thyroid cancer. Cancer Control. 13:119–128. 2006.PubMed/NCBI

3 

Fassnacht M, Kreissl MC, Weismann D and Allolio B: New targets and therapeutic approaches for endocrine malignancies. Pharmacol Ther. 123:117–141. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Ghossein R: Problems and controversies in the histopathology of thyroid carcinomas of follicular cell origin. Arch Pathol Lab Med. 133:683–691. 2009.PubMed/NCBI

5 

Hedayati M, Zarif Yeganeh M, Sheikhol Eslami S, Rezghi Barez S, Hoghooghi Rad L and Azizi F: Predominant RET germline mutations in exons 10, 11, and 16 in Iranian patients with hereditary medullary thyroid carcinoma. J Thyroid Res. 2011:2642482011.PubMed/NCBI

6 

Kondo T, Ezzat S and Asa SL: Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer. 6:292–306. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Xing M: BRAF mutation in thyroid cancer. Endocr Relat Cancer. 12:245–262. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF and de Micco C: Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab. 88:2745–2752. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Hedayati M, Nabipour I, Rezaei-Ghaleh N and Azizi F: Germline RET mutations in exons 10 and 11: an Iranian survey of 57 medullary thyroid carcinoma cases. Med J Malaysia. 61:564–569. 2006.PubMed/NCBI

10 

Nikiforov YE: RET/PTC rearrangement in thyroid tumors. Endocr Pathol. 13:3–16. 2002. View Article : Google Scholar

11 

Bethanis S, Koutsodontis G, Palouka T, et al: A newly detected mutation of the RET protooncogene in exon 8 as a cause of multiple endocrine neoplasia type 2A. Hormones (Athens). 6:152–156. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Lips CJ, Hӧppener JW and Thijssen JH: Medullary thyroid carcinoma: role of genetic testing and calcitonin measurement. Ann Clin Biochem. 38:168–179. 2001. View Article : Google Scholar : PubMed/NCBI

13 

Musholt TJ, Schӧnefeld S, Schwarz CH, et al: Impact of pathognomonic genetic alterations on the prognosis of papillary thyroid carcinoma. ESES vienna presentation. Langenbecks Arch Surg. 395:877–883. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE and Fagin JA: High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63:1454–1457. 2003.PubMed/NCBI

15 

Nikiforova MN, Kimura ET, Gandhi M, et al: BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 88:5399–5404. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Sharma S, Kelly TK and Jones PA: Epigenetics in cancer. Carcinogenesis. 31:27–36. 2010. View Article : Google Scholar

17 

Egger G, Liang G, Aparicio A and Jones PA: Epigenetics in human disease and prospects for epigenetic therapy. Nature. 429:457–463. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Katz TA, Huang Y, Davidson NE and Jankowitz RC: Epigenetic reprogramming in breast cancer: from new targets to new therapies. Ann Med. 24:1–12. 2014.PubMed/NCBI

19 

Kondo T, Nakazawa T, Ma D, et al: Epigenetic silencing of TTF-1/NKX2,1 through DNA hypermethylation and histon H3 modification in thyroid carcinoma. Lab invest. 89:791–799. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Moon JW, Lee SK, Lee JO, et al: Identification of novel hypermethylated genes and demethylationg effect of vincristine in colorectal cancer. J Exp Clin Cancer Res. 33:42014. View Article : Google Scholar : PubMed/NCBI

21 

Jones PA and Baylin SB: The epigenomics of cancer. Cell. 128:683–692. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Herman JG and Baylin SB: Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 349:2042–2054. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Eden A, Gaudet F, Waghmare A and Jaenisch R: Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 300:4552003. View Article : Google Scholar : PubMed/NCBI

24 

Lu J, Getz G, Miska EA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Cantley LC and Neel BG: New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA. 96:4240–4245. 1999. View Article : Google Scholar : PubMed/NCBI

26 

Chu EC and Tarnawski AS: PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit. 10:RA235–RA241. 2004.PubMed/NCBI

27 

Alvarez-Nuñez F, Bussaglia E, Mauricio D, et al Thyroid Neoplasia Study Group: PTEN promoter methylation in sporadic thyroid carcinomas. Thyroid. 16:17–23. 2006.PubMed/NCBI

28 

Pfeifer GP and Dammann R: Methylation of the tumor suppressor gene RASSF1A in human tumors. Biochemistry (Mosc). 70:576–583. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Schagdarsurengin U, Gimm O, Hoang-Vu C, Dralle H, Pfeifer GP and Dammann R: Frequent epigenetic silencing of the CpG island promoter of RASSF1A in thyroid carcinoma. Cancer Res. 62:3698–3701. 2002.PubMed/NCBI

30 

Xing M, Cohen Y, Mambo E, et al: Early occurrence of RASSF1A hypermethylation and its mutual exclusion with BRAF mutation in thyroid tumorigenesis. Cancer Res. 64:1664–1668. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Qi JH, Ebrahem Q, Moore N, et al: A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med. 9:407–415. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Hoque MO, Rosenbaum E, Westra WH, et al: Quantitative assessment of promoter methylation profiles in thyroid neoplasms. J Clin Endocrinol Metab. 90:4011–4018. 2005. View Article : Google Scholar : PubMed/NCBI

33 

Hu S, Liu D, Tufano RP, et al: Association of aberrant methylation of tumor suppressor genes with tumor aggressiveness and BRAF mutation in papillary thyroid cancer. Int J Cancer. 119:2322–2329. 2006. View Article : Google Scholar : PubMed/NCBI

34 

De Falco V, Castellone MD, De Vita G, et al: RET/papillary thyroid carcinoma oncogenic signaling through the Rap1 small GTPase. Cancer Res. 67:381–390. 2007.

35 

Gao L, Feng Y, Bowers R, et al: Ras-associated protein-1 regulates extracellular signal-regulated kinase activation and migration in melanoma cells: two processes important to melanoma tumorigenesis and metastasis. Cancer Res. 66:7880–7888. 2006. View Article : Google Scholar

36 

Wang Z, Dillon TJ, Pokala V, et al: Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol Cell Biol. 26:2130–2145. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Zhang L, Chenwei L, Mahmood R, et al: Identification of a putative tumor suppressor gene Rap1GAP in pancreatic cancer. Cancer Res. 66:898–906. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Zhang Z, Mitra RS, Henson BS, et al: Rap1GAP inhibits tumor growth in oropharyngeal squamous cell carcinoma. Am J Pathol. 168:585–596. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Nellore A, Paziana K, Ma C, et al: Loss of Rap1GAP in papillary thyroid cancer. J Clin Endocrinol Metab. 94:1026–1032. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Tsygankova OM, Prendergast GV, Puttaswamy K, et al: Downregulation of Rap1GAP contributes to Ras transformation. Mol Cell Biol. 27:6647–6658. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Rodríguez-Rodero S, Fernández AF, Fernández-Morera JL, et al: DNA methylation signatures identify biologically distinct thyroid cancer subtypes. J Clin Endocrinol Metab. 98:2811–2821. 2013.PubMed/NCBI

42 

Ogasawara S, Maesawa C, Yamamoto M, et al: Disruption of cell-type-specific methylation at the Maspin gene promoter is frequently involved in undifferentiated thyroid cancers. Oncogene. 23:1117–1124. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Xing M, Usadel H, Cohen Y, et al: Methylation of the thyroid-stimulating hormone receptor gene in epithelial thyroid tumors: a marker of malignancy and a cause of gene silencing. Cancer Res. 63:2316–2321. 2003.PubMed/NCBI

44 

Faam B, Daneshpour MS, Azizi F, Salehi M and Hedayati M: Association between TPO gene polymorphisms and anti-TPO level in Tehranian population: TLGS. Gene. 498:116–119. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Eze OP, Starker LF and Carling T: The role of epigenetic alterations in papillary thyroid carcinogenesis. J Thyroid Res 2011: 895470. 2011.PubMed/NCBI

46 

Xing M: Gene methylation in thyroid tumorigenesis. Endocrinology. 148:948–953. 2007. View Article : Google Scholar

47 

He H, Jazdzewski K, Li W, et al: The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA. 102:19075–19080. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Kitamura Y and Hirotab S: Kit as a human oncogenic tyrosine kinase. Cell Mol Life Sci. 61:2924–2931. 2004. View Article : Google Scholar : PubMed/NCBI

49 

Weber F, Teresi RE, Broelsch CE, Frilling A and Eng C: A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab. 91:3584–3591. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Gallagher WM, Greene LM, Ryan MP, et al: Human fibulin-4: analysis of its biosynthetic processing and mRNA expression in normal and tumour tissues. FEBS Lett. 489:59–66. 2001. View Article : Google Scholar : PubMed/NCBI

51 

Schulte KM, Jonas C, Krebs R and Rӧher HD: Activin A and activin receptors in thyroid cancer. Thyroid. 11:3–14. 2001. View Article : Google Scholar : PubMed/NCBI

52 

Abraham D, Jackson N, Gundara JS, et al: MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clin Cancer Res. 17:4772–4781. 2011. View Article : Google Scholar

53 

Mian C, Pennelli G, Fassan M, et al: MicroRNA profiles in familial and sporadic medullary thyroid carcinoma: preliminary relationships with RET status and outcome. Thyroid. 22:890–896. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Lagos-Quintana M, Rauhut R, Lendeckel W and Tuschl T: Identification of novel genes coding for small expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI

55 

Frezzetti D, De Menna M, Zoppoli P, et al: Upregulation of miR-21 by Ras in vivo and its role in tumor growth. Oncogene. 30:275–286. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Zuo H, Gandhi M, Edreira MM, et al: Downregulation of Rap1GAP through epigenetic silencing and loss of heterozygosity promotes invasion and progression of thyroid tumors. Cancer Res. 70:1389–1397. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Stephen JK, Chitale D, Narra V, Chen K M, Sawhney R and Worsham MJ: DNA methylation in thyroid tumorigenesis. Cancers (Basel). 3:1732–1743. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Zhang X, Li D, Li M, et al: MicroRNA-146a targets PRKCE to modulate papillary thyroid tumor development. Int J Cancer. 134:257–267. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Visone R, Russo L, Pallante P, et al: MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer. 14:791–798. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST and Patel T: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 133:647–658. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Asangani IA, Rasheed SA, Nikolova DA, et al: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 27:2128–2136. 2008. View Article : Google Scholar

62 

Sabatel C, Malvaux L, Bovy N, et al: MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS One. 6:e169792011. View Article : Google Scholar : PubMed/NCBI

63 

Jazdzewski K, Boguslawska J, Jendrzejewski J, et al: Thyroid hormone receptor beta (THRB) is a major target gene for microRNAs deregulated in papillary thyroid carcinoma (PTC). J Clin Endocrinol Metab. 96:E546–E553. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Sun Y, Yu S, Liu Y, Wang F, Liu Y and Xiao H: Expression of miRNAs in papillary thyroid carcinomas is associated with BRAF mutation and clinicopathological features in Chinese patients. Int J Endocrinol 2013: 128735. 2013.PubMed/NCBI

65 

Marini F, Luzi E and Brandi ML: MicroRNA role in thyroid cancer development. J Thyroid Res 2011: 407123. 2011.

66 

Hudson J, Duncavage E, Tamburrino A, et al: Overexpression of miR-10a and miR-375 and downregulation of YAP1 in medullary thyroid carcinoma. Exp Mol Pathol. 95:62–67. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Ajith TA: Physiological relevance and theraeutic value of micro RNA in cancer. Front Pathol Genet. 1:15–19. 2013.

68 

Chen J, Wang M, Guo M, Xie Y and Cong YS: miR-127 regulates cell proliferation and senescence by targeting BCL6. PLoS One. 8:e802662013. View Article : Google Scholar : PubMed/NCBI

69 

Cahill S, Smyth P, Denning K, et al: Effect of BRAFV600E mutation on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol Cancer. 6:212007. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

January 2015
Volume 3 Issue 1

Print ISSN: 2049-9434
Online ISSN:2049-9442

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Faam, B., Ghaffari, M.A., Ghadiri, A., & Azizi, F. (2015). Epigenetic modifications in human thyroid cancer (Review). Biomedical Reports, 3, 3-8. https://doi.org/10.3892/br.2014.375
MLA
Faam, B., Ghaffari, M. A., Ghadiri, A., Azizi, F."Epigenetic modifications in human thyroid cancer (Review)". Biomedical Reports 3.1 (2015): 3-8.
Chicago
Faam, B., Ghaffari, M. A., Ghadiri, A., Azizi, F."Epigenetic modifications in human thyroid cancer (Review)". Biomedical Reports 3, no. 1 (2015): 3-8. https://doi.org/10.3892/br.2014.375