miR‑181b as a key regulator of the oncogenic process and its clinical implications in cancer (Review)

  • Authors:
    • Juan Liu
    • Weifeng Shi
    • Changping Wu
    • Jingfang Ju
    • Jingting Jiang
  • View Affiliations

  • Published online on: November 7, 2013     https://doi.org/10.3892/br.2013.199
  • Pages: 7-11
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNAs (miRNAs or miRs) are small, non‑coding, single‑stranded RNA molecules that regulate gene expression at the post‑transcriptional level to repress protein expression of target genes. Among these, miR‑181b has been found to be a critical regulatory miRNA linking inflammation and cancer. The functional significance of miR‑181b in various tumors and translational research suggests that it exhibits great potential as a predictive and prognostic biomarker. Extensive efforts are underway to identify mRNA targets and the affected regulatory networks, which may be the key to providing a better understanding of miR‑181b‑mediated signaling pathways.

References

1 

Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993.

2 

Lagos-Quintana M, Rauhut R, Lendeckel W, et al: Identification of novel genes coding for small expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Lee RC and Ambros V: An extensive class of small RNAs in Caenorhabditis elegans. Science. 294:862–864. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Salaun B, Yamamoto T, Badran B, et al: Differentiation associated regulation of microRNA expression in vivo in human CD8+T cell subsets. J Transl Med. 9:442011. View Article : Google Scholar : PubMed/NCBI

5 

Ooi AG, Sahoo D, Adorno M, et al: MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci USA. 107:21505–21510. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Ghisi M, Corradin A, Basso K, et al: Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood. 117:7053–7062. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Visone R, Veronese A, Balatti V, et al: MiR-181b: new perspective to evaluate disease progression in chronic lymphocytic leukemia. Oncotarget. 3:195–202. 2012.PubMed/NCBI

8 

Zhu DX, Miao KR, Fang C, et al: Aberrant microRNA expression in Chinese patients with chronic lymphocytic leukemia. Leuk Res. 35:730–734. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Tavano F, di Mola FF, Piepoli A, et al: Changes in miR-143 and miR-21 expression and clinicopathological correlations in pancreatic cancers. Pancreas. 41:1280–1284. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Esquela-Kerscher A and Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006. View Article : Google Scholar

11 

Michael MZ, O’ Connor SM, van Holst Pellekaan NG, et al: Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 1:882–891. 2003.PubMed/NCBI

12 

Lazebnik Y: What are the hallmarks of cancer? Nat Rev Cancer. 10:232–233. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar

14 

Lopez-Camarillo C, Marchat LA, Arechaga-Ocampo E, et al: MetastamiRs: non-coding microRNAs driving cancer invasion and metastasis. Int J Mol Sci. 13:1347–1379. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Mendell JT and Olson EN: MicroRNAs in stress signaling and human disease. Cell. 148:1172–1187. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Schetter AJ, Leung SY, Sohn JJ, et al: MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 299:425–436. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Pallante P, Visone R, Ferracin M, et al: MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 13:497–508. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Zhai H and Ju J: Implications of microRNAs in colorectal cancer development, diagnosis, prognosis, and therapeutics. Front Genet. 2:000782011. View Article : Google Scholar : PubMed/NCBI

19 

Chen Y, Gelfond J, McManus LM, et al: Temporal microRNA expression during in vitro myogenic progenitor cell proliferation and differentiation: regulation of proliferation by miR-682. Physiol Genomics. 43:621–630. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Liu G, Min H, Yue S, et al: Pre-miRNA loop nucleotides control the distinct activities of mir-181a-1 and mir-181c in early T cell development. PLoS One. 3:e35922008. View Article : Google Scholar : PubMed/NCBI

21 

Ji J, Yamashita T and Wang XW: Wnt/beta-catenin signaling activates microRNA-181 expression in hepatocellular carcinoma. Cell Biosci. 1:42011. View Article : Google Scholar : PubMed/NCBI

22 

Ren Y, Gao J, Liu JQ, et al: Differential signature of fecal microRNAs in patients with pancreatic cancer. Mol Med Rep. 6:201–209. 2012.PubMed/NCBI

23 

Chen L, Yang Q, Kong WQ, et al: MicroRNA-181b targets cAMP responsive element binding protein 1 in gastric adenocarcinomas. IUBMB Life. 64:628–635. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Panarelli NC, Chen YT, Zhou XK, et al: MicroRNA expression aids the preoperative diagnosis of pancreatic ductal adenocarcinoma. Pancreas. 41:685–690. 2012.PubMed/NCBI

25 

Nurul-Syakima AM, Yoke-Kqueen C, Sabariah AR, et al: Differential microRNA expression and identification of putative miRNA targets and pathways in head and neck cancers. Int J Mol Med. 28:327–336. 2011.PubMed/NCBI

26 

Ratert N, Meyer HA, Jung M, et al: Reference miRNAs for miRNAome analysis of urothelial carcinomas. PLoS One. 7:e393092012. View Article : Google Scholar : PubMed/NCBI

27 

Li X, Zhang Y, Zhang H, et al: miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol Cancer Res. 9:824–833. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Schaefer A, Jung M, Mollenkopf HJ, et al: Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 126:1166–1176. 2010.PubMed/NCBI

29 

Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Gregory RI and Shiekhattar R: MicroRNA biogenesis and cancer. Cancer Res. 65:3509–3512. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Eis PS, Tam W, Sun L, et al: Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 102:3627–3632. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Cervigne NK, Reis PP, Machado J, et al: Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet. 18:4818–4829. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Frank DA: STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett. 251:199–210. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Yu H, Kortylewski M and Pardoll D: Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 7:41–51. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Yu H, Pardoll D and Jove R: STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 9:798–809. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Iliopoulos D, Jaeger SA, Hirsch HA, et al: STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 39:493–506. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Sun X, Icli B, Wara AK, et al: MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation. J Clin Invest. 122:1973–1990. 2012.PubMed/NCBI

38 

Xi Y, Formentini A, Chien M, et al: Prognostic values of microRNAs in colorectal cancer. Biomark Insights. 2:113–121. 2006.PubMed/NCBI

39 

Nakajima G, Hayashi K, Xi Y, et al: Non-coding microRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics. 3:317–324. 2006.PubMed/NCBI

40 

Xu R, Ma N, Wang F, Ma L, et al: Results of a randomized and controlled clinical trial evaluating the efficacy and safety of combination therapy with Endostar and S-1 combined with oxaliplatin in advanced gastric cancer. Onco Targets Ther. 6:925–929. 2013.PubMed/NCBI

41 

Watanabe K, Kawahara H, Enomoto H, et al: Feasibility Study of Oxaliplatin with Oral S-1 or Capecitabine as First-line Therapy for Patients with Metastases from Colorectal Cancer. Anticancer Res. 33:4029–4032. 2013.PubMed/NCBI

42 

Jiang J, Zheng X, Xu X, et al: Prognostic significance of miR-181b and miR-21 in gastric cancer patients treated with S-1/oxaliplatin or doxifluridine/oxaliplatin. PLoS One. 6:e232712011. View Article : Google Scholar : PubMed/NCBI

43 

Zhu W, Shan X, Wang T, et al: miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer. 127:2520–2529. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Wang B, Hsu SH, Majumder S, et al: TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene. 29:1787–1797. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Wang B, Li W, Guo K, et al: miR-181b promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients. Biochem Biophys Res Commun. 421:4–8. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Yan LX, Huang XF, Shao Q, et al: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14:2348–2360. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Mansueto G, Forzati F, Ferraro A, et al: Identification of a new pathway for tumor progression: microRNA-181b up-regulation and CBX7 down-regulation by HMGA1 protein. Genes Cancer. 1:210–224. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Jones KB, Salah Z, Del Mare S, et al: miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res. 72:1865–1877. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Xu X, Jia R, Zhou Y, et al: Microarray-based analysis: Identification of hypoxia-regulated microRNAs in retinoblastoma cells. Int J Oncol. 38:1385–1393. 2011.PubMed/NCBI

50 

Shi L, Cheng Z, Zhang J, et al: hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res. 1236:185–193. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Ciafre SA, Galardi S, Mangiola A, et al: Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 334:1351–1358. 2005. View Article : Google Scholar : PubMed/NCBI

52 

Conti A, Aguennouz M, La Torre D, et al: miR-21 and 221 upregulation and miR-181b downregulation in human grade II–IV astrocytic tumors. J Neurooncol. 93:325–332. 2009.PubMed/NCBI

53 

Zhi F, Chen X, Wang S, et al: The use of hsa-miR-21, hsa-miR-181b and hsa-miR-106a as prognostic indicators of astrocytoma. Eur J Cancer. 46:1640–1649. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Slaby O, Lakomy R, Fadrus P, et al: MicroRNA-181 family predicts response to concomitant chemoradiotherapy with temozolomide in glioblastoma patients. Neoplasma. 57:264–269. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Tunca B, Tezcan G, Cecener G, et al: Olea europaea leaf extract alters microRNA expression in human glioblastoma cells. J Cancer Res Clin Oncol. 138:1831–1844. 2012. View Article : Google Scholar

56 

Calin GA, Dumitru CD, Shimizu M, et al: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI

57 

Chen H, Chen Q, Fang M, et al: MicroRNA-181b targets MLK2 in HL-60 cells. Sci China Life Sci. 53:101–106. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Zhu DX, Zhu W, Fang C, et al: miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis. 33:1294–1301. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Zanette DL, Rivadavia F, Molfetta GA, et al: miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res. 40:1435–1440. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Sivina M, Hartmann E, Vasyutina E, et al: Stromal cells modulate TCL1 expression, interacting AP-1 components and TCL1-targeting micro-RNAs in chronic lymphocytic leukemia. Leukemia. 26:1812–1820. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

January 2014
Volume 2 Issue 1

Print ISSN: 2049-9434
Online ISSN:2049-9442

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, J., Shi, W., Wu, C., Ju, J., & Jiang, J. (2014). miR‑181b as a key regulator of the oncogenic process and its clinical implications in cancer (Review). Biomedical Reports, 2, 7-11. https://doi.org/10.3892/br.2013.199
MLA
Liu, J., Shi, W., Wu, C., Ju, J., Jiang, J."miR‑181b as a key regulator of the oncogenic process and its clinical implications in cancer (Review)". Biomedical Reports 2.1 (2014): 7-11.
Chicago
Liu, J., Shi, W., Wu, C., Ju, J., Jiang, J."miR‑181b as a key regulator of the oncogenic process and its clinical implications in cancer (Review)". Biomedical Reports 2, no. 1 (2014): 7-11. https://doi.org/10.3892/br.2013.199