Estrogen receptor-positive breast cancer molecular signatures and therapeutic potentials (Review)

  • Authors:
    • Mei Hong Zhang
    • Hong Tao Man
    • Xiao Dan Zhao
    • Ni Dong
    • Shi Liang Ma
  • View Affiliations

  • Published online on: October 25, 2013     https://doi.org/10.3892/br.2013.187
  • Pages: 41-52
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

In this review, the advances in the study of breast cancer molecular classifications and the molecular signatures of the luminal subtypes A and B of breast cancer were summarized. Effective clinical outcomes depend mainly on successful preclinical diagnosis and therapeutic decisions. Over the last few years, the ever‑expanding investigations focusing on breast cancer diagnosis and the clinical trials have provided accumulating information on the molecular characteristics of breast cancer. Specifically, among the estrogen receptor (ER)‑positive types of breast cancer, the luminal subtype A breast cancer has been shown to exhibit good clinical outcomes with endocrine therapy, whereas the luminal subtype B breast cancer represents the more complicated type, diagnostically as well as therapeutically. Furthermore, even in luminal subtype A breast cancer, the resistance to treatment has become the major limitation for endocrine‑based therapy. Accumulating molecular data and further clinical trials may enable more accurate diagnostic and therapeutic decisions. The molecular signatures have emerged as a powerful tool for future diagnosis and therapeutic decisions, although currently available data are limited.

References

1 

Pedraza V, Gomez-Capilla JA, Escaramis G, et al: Gene expression signatures in breast cancer distinguish phenotype characteristics, histologic subtypes, and tumor invasiveness. Cancer. 116:486–496. 2010. View Article : Google Scholar

2 

Sorlie T, Tibshirani R, Parker J, et al: Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 100:8418–8423. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Bánkfalv A, Ludwig A, De-Hesselle B, Buerger H, Buchwalow IB and Boecker W: Different proliferative activity of the glandular and myoepithelial lineages in benign proliferative and early malignant breast diseases. Mod Pathol. 17:1051–1061. 2004.PubMed/NCBI

4 

Prat A and Perou CM: Deconstructing the molecular portraits of breast cancer. Mol Oncol. 5:5–23. 2011. View Article : Google Scholar

5 

van’t Veer LJ, Dai H, van de Vijver MJ, et al: Gene expression profiling predicts clinical outcome of breast cancer. Nature. 415:530–536. 2002.PubMed/NCBI

6 

Sotiriou C, Neo SY, McShane LM, et al: Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA. 100:10393–10398. 2003. View Article : Google Scholar : PubMed/NCBI

7 

Chung CH, Bernard PS and Perou CM: Molecular portraits and the family tree of cancer. Nat Genet. 32:533–540. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Paik S, Shak S, Tang G, et al: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 351:2817–2826. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Peinado H, Olmeda D and Cano A: Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 7:415–428. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Liu N, Yu Q, Liu TJ, et al: P-cadherin expression and basal-like subtype in breast cancers. Med Oncol. 29:2606–2612. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Sørlie T, Perou CM, Tibshirani R, et al: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 98:10869–10874. 2001.PubMed/NCBI

12 

Carey LA, Perou CM, Livasy CA, et al: Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA. 295:2492–2502. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Onitilo AA, Engel JM, Greenlee RT and Mukesh BN: Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res. 7:4–13. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Perou CM, Sørlie T, Eisen MB, et al: Molecular portraits of human breast tumours. Nature. 406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Herschkowitz JI, Simin K, Weigman VJ, et al: Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 8:R762007. View Article : Google Scholar : PubMed/NCBI

16 

Creighton CJ, Li X, Landis M, et al: Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA. 106:13820–13825. 2009. View Article : Google Scholar

17 

Cheang MC, Chia SK, Voduc D, et al: Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 101:736–750. 2009. View Article : Google Scholar

18 

Fountzilas G, Dafni U, Bobos M, et al: Differential response of immunohistochemically defined breast cancer subtypes to anthracycline-based adjuvant chemotherapy with or without paclitaxel. PLoS One. 7:e379462012. View Article : Google Scholar

19 

Hannemann J, Kristel P, van Tinteren H, et al: Molecular subtypes of breast cancer and amplification of topoisomerase II alpha: predictive role in dose intensive adjuvant chemotherapy. Br J Cancer. 95:1334–1341. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B and Senn HJ: Strategies for subtypes - dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 22:1736–1747. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Hoch RV, Thompson DA, Baker RJ and Weigel RJ: GATA-3 is expressed in association with estrogen receptor in breast cancer. Int J Cancer. 84:122–128. 1999. View Article : Google Scholar : PubMed/NCBI

22 

Jordan VC, Wolf MF, Mirecki DM, Whitford DA and Welshons WV: Hormone receptor assays: clinical usefulness in the management of carcinoma of the breast. Crit Rev Clin Lab Sci. 26:97–152. 1988. View Article : Google Scholar : PubMed/NCBI

23 

Hu Z, Fan C, Oh DS, et al: The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics. 7:962006. View Article : Google Scholar : PubMed/NCBI

24 

Badve S, Turbin D, Thorat MA, et al: FOXA1 expression in breast cancer - correlation with luminal subtype A and survival. Clin Cancer Res. 13:4415–4421. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Oh DS, Troester MA, Usary J, et al: Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J Clin Oncol. 24:1656–1664. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Smid M, Wang Y, Zhang Y, et al: Subtypes of breast cancer show preferential site of relapse. Cancer Res. 68:3108–3114. 2008. View Article : Google Scholar : PubMed/NCBI

27 

van de Vijver MJ, He YD, van’t Veer LJ, et al: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 347:1999–2009. 2002.

28 

Lacroix M and Leclercq G: About GATA3, HNF3A, and XBP1, three genes co-expressed with the oestrogen receptor-alpha gene (ESR1) in breast cancer. Mol Cell Endocrinol. 219:1–7. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Carroll JS and Brown M: Estrogen receptor target gene: an evolving concept. Mol Endocrinol. 20:1707–1714. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Carroll JS, Liu XS, Brodsky AS, et al: Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell. 122:33–43. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Mehta RJ, Jain RK, Leung S, et al: FOXA1 is an independent prognostic marker for ER-positive breast cancer. Breast Cancer Res Treat. 131:881–890. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D and Carroll JS: FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 43:27–33. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Fang SH, Chen Y and Weigel RJ: GATA-3 as a marker of hormone response in breast cancer. J Surg Res. 157:290–295. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Chou J, Provot S and Werb Z: GATA3 in development and cancer differentiation: cells GATA have it! J Cell Physiol. 222:42–49. 2010.

35 

Mehra R, Varambally S, Ding L, et al: Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res. 65:11259–11264. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Dolled-Filhart M, Rydén L, Cregger M, et al: Classification of breast cancer using genetic algorithms and tissue microarrays. Clin Cancer Res. 12:6459–6468. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Asselin-Labat ML, Sutherland KD, Barker H, et al: Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol. 9:201–209. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Dawson SJ, Makretsov N, Blows FM, et al: BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br J Cancer. 103:668–675. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Ali HR, Dawson SJ, Blows FM, et al: A Ki67/BCL2 index based on immunohistochemistry is highly prognostic in ER-positive breast cancer. J Pathol. 226:97–107. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Abdel-Fatah TM, Powe DG, Ball G, et al: Proposal for a modified grading system based on mitotic index and Bcl2 provides objective determination of clinical outcome for patients with breast cancer. J Pathol. 222:388–399. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Callagy GM, Webber MJ, Pharoah PD and Caldas C: Meta-analysis confirms BCL2 is an independent prognostic marker in breast cancer. BMC Cancer. 8:1532008. View Article : Google Scholar : PubMed/NCBI

42 

Kallel-Bayoudh I, Hassen HB, Khabir A, et al: Bcl-2 expression and triple negative profile in breast carcinoma. Med Oncol. 28:S55–S61. 2010. View Article : Google Scholar

43 

Saghatchian M, Mook S, Pruneri G, et al: Additional prognostic value of the 70-gene signature (MammaPrint®) among breast cancer patients with 4–9 positive lymph nodes. Breast. Jan 21–2013.(Epub ahead of print).

44 

Yokoyama J, Kobayashi T, Nakamura T and Nakajima Y: A case of male breast cancer in which oncotype DX was used to determine the therapeutic strategy. Gan To Kagaku Ryoho. 39:2057–2059. 2012.(In Japanese).

45 

Morris SR and Carey LA: Molecular profiling in breast cancer. Rev Endocr Metab Disord. 8:185–198. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Endo Y, Toyama T, Takahashi S, et al: miR-1290 and its potential targets are associated with characteristics of estrogen receptor α-positive breast cancer. Endocr Relat Cancer. 20:91–102. 2013.

47 

Prat A, Parker JS, Fan C, et al: Concordance among gene expression-based predictors for ER-positive breast cancer treated with adjuvant tamoxifen. Ann Oncol. 23:2866–2873. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Swedenborg E, Power KA, Cai W, Pongratz I and Rüegg J: Regulation of estrogen receptor beta activity and implications in health and disease. Cell Mol Life Sci. 66:3873–3894. 2009. View Article : Google Scholar : PubMed/NCBI

49 

El-Tanani MK and Green CD: Interaction between estradiol and growth factors in the regulation of specific gene expression in MCF-7 human breast cancer cells. J Steroid Biochem Mol Biol. 60:269–276. 1997. View Article : Google Scholar : PubMed/NCBI

50 

Osz J, Brelivet Y, Peluso-Iltis C, et al: Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors. Proc Natl Acad Sci USA. 109:E588–E594. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Choi KC and Jeung EB: The biomarker and endocrine disruptors in mammals. J Reprod Dev. 49:337–345. 2003. View Article : Google Scholar : PubMed/NCBI

52 

Chawla A, Repa JJ, Evans RM and Mangelsdorf DJ: Nuclear receptors and lipid physiology: opening the X-files. Science. 294:1866–1870. 2001. View Article : Google Scholar : PubMed/NCBI

53 

Loi S, Sotiriou C, Haibe-Kains B, et al: Gene expression profiling identifies activated growth factor signaling in poor prognosis (luminal-B) estrogen receptor positive breast cancer. BMC Med Genomics. 2:372009. View Article : Google Scholar : PubMed/NCBI

54 

Lee HR, Hwang KA, Park MA, Yi BR, Jeung EB and Choi KC: Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway. Int J Mol Med. 29:883–890. 2012.

55 

Anderson E: The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Cancer Res. 4:197–201. 2002. View Article : Google Scholar : PubMed/NCBI

56 

Hartman J, Strom A and Gustafsson JA: Estrogen receptor beta in breast cancer - diagnostic and therapeutic implications. Steroids. 74:635–641. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Brenton JD, Carey LA, Ahmed AA and Caldas C: Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol. 23:7350–7360. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Mauri D, Pavlidis N, Polyzos NP and Ioannidis JP: Survival with aromatase inhibitors and inactivators versus standard hormonal therapy in advanced breast cancer: meta-analysis. J Natl Cancer Inst. 98:1285–1291. 2006. View Article : Google Scholar : PubMed/NCBI

59 

Howell A, Cuzick J, Baum M, et al: Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet. 365:60–62. 2005.

60 

Fox EM, Arteaga CL and Miller TW: Abrogating endocrine resistance by targeting ERα and PI3K in breast cancer. Front Oncol. 2:1452012.

61 

Musgrove EA and Sutherland RL: Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 9:631–643. 2009. View Article : Google Scholar : PubMed/NCBI

62 

No authors listed. Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet. 351:1451–1467. 1998. View Article : Google Scholar : PubMed/NCBI

63 

Harris TJ and McCormick F: The molecular pathology of cancer. Nat Rev Clin Oncol. 7:251–265. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Hammond ME, Hayes DF, Dowsett M, et al: American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 28:2784–2795. 2010. View Article : Google Scholar

65 

Pujol P, Daures JP, Thezenas S, Guilleux F, Rouanet P and Grenier J: Changing estrogen and progesterone receptor patterns in breast carcinoma during the menstrual cycle and menopause. Cancer. 83:698–705. 1998. View Article : Google Scholar : PubMed/NCBI

66 

Shou J, Massarweh S, Osborne CK, et al: Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 96:926–935. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Rutanen EM, Pekonen F, Nyman T and Wahlström T: Insulin-like growth factors and their binding proteins in benign and malignant uterine diseases. Growth Regul. 3:74–77. 1993.PubMed/NCBI

68 

O’Toole SA, Dunn E, Sheppard BL, et al: Oestrogen regulated gene expression in normal and malignant endometrial tissue. Maturitas. 51:187–198. 2005.PubMed/NCBI

69 

Millar EK, Graham PH, O’Toole SA, et al: Prediction of local recurrence, distant metastases, and death after breast-conserving therapy in early-stage invasive breast cancer using a five-biomarker panel. J Clin Oncol. 27:4701–4708. 2009. View Article : Google Scholar

70 

Miller KD, Burstein HJ, Elias AD, et al: Phase II study of SU11248, a multitargeted receptor tyrosine kinase inhibitor (TKI), in patients (pts) with previously treated metastatic breast cancer (MBC). J Clin Oncol. 23:5632005.

71 

Coxon A, Bush T, Saffran D, et al: Broad antitumor activity in breast cancer xenografts by motesanib, a highly selective, oral inhibitor of vascular endothelial growth factor, platelet-derived growth factor, and Kit receptors. Clin Cancer Res. 15:110–118. 2009. View Article : Google Scholar

72 

Ma CX, Crowder RJ and Ellis MJ: Importance of PI3-kinase pathway in response/resistance to aromatase inhibitors. Steroids. 76:750–752. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Hisamatsu Y, Tokunaga E, Yamashita N, et al: Impact of FOXA1 expression on the prognosis of patients with hormone receptor-positive breast cancer. Ann Surg Oncol. 19:1145–1152. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Habashy HO, Rakha EA, Aleskandarany M, et al: FOXO3a nuclear localisation is associated with good prognosis in luminal-like breast cancer. Breast Cancer Res Treat. 129:11–21. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Lanari C, Wargon V, Rojas P and Molinolo AA: Antiprogestins in breast cancer treatment: are we ready? Endocr Relat Cancer. 19:R35–R50. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Cui X, Schiff R, Arpino G, Osborne CK and Lee AV: Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol. 23:7721–7735. 2005. View Article : Google Scholar : PubMed/NCBI

77 

Safe S and Kim K: Nuclear receptor-mediated transactivation through interaction with Sp proteins. Prog Nucleic Acid Res Mol Biol. 77:1–36. 2004. View Article : Google Scholar : PubMed/NCBI

78 

Hewitt SC and Korach KS: Estrogen receptors: structure, mechanisms and function. Rev Endocr Metab Disord. 3:193–200. 2002. View Article : Google Scholar : PubMed/NCBI

79 

Gohno T, Seino Y, Hanamura T, et al: Individual transcriptional activity of estrogen receptors in primary breast cancer and its clinical significance. Cancer Med. 1:328–337. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Perou CM, Jeffrey SS, van de Rijn M, et al: Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA. 96:9212–9217. 1999. View Article : Google Scholar : PubMed/NCBI

81 

Loi S, Haibe-Kains B, Desmedt C, et al: Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol. 25:1239–1246. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Turner N, Pearson A, Sharpe R, et al: FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 70:2085–2094. 2010. View Article : Google Scholar

83 

de Azambuja E, Cardoso F, de Castro GJ Jr, et al: Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer. 96:1504–1513. 2007.PubMed/NCBI

84 

Tran B and Bedard PL: Luminal-B breast cancer and novel therapeutic targets. Breast Cancer Res. 13:2212011. View Article : Google Scholar : PubMed/NCBI

85 

Wirapati P, Sotiriou C, Kunkel S, et al: Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 10:R652008. View Article : Google Scholar : PubMed/NCBI

86 

Prat A, Ellis MJ and Perou CM: Practical implications of gene-expression-based assays for breast oncologists. Nat Rev Clin Oncol. 9:48–57. 2011. View Article : Google Scholar : PubMed/NCBI

87 

Nielsen TO, Parker JS, Leung S, et al: A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res. 16:5222–5232. 2010. View Article : Google Scholar

88 

Rakha EA, El-Sayed ME, Reis-Filho JS and Ellis IO: Expression profiling technology: its contribution to our understanding of breast cancer. Histopathology. 52:67–81. 2008. View Article : Google Scholar : PubMed/NCBI

89 

Osborne CK, Neven P, Dirix LY, et al: Gefitinib or placebo in combination with tamoxifen in patients with hormone receptor-positive metastatic breast cancer: a randomized phase II study. Clin Cancer Res. 17:1147–1159. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Baselga J, Campone M, Piccart M, et al: Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 366:520–529. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Lønning PE: Poor-prognosis estrogen receptor- positive disease: present and future clinical solutions. Ther Adv Med Oncol. 4:127–137. 2012.PubMed/NCBI

92 

Millar EK, Graham PH, McNeil CM, et al: Prediction of outcome of early ER+breast cancer is improved using a biomarker panel, which includes Ki-67 and p53. Br J Cancer. 105:272–280. 2011.PubMed/NCBI

93 

Jacquemier J, Charafe-Jauffret E, Monville F, et al: Association of GATA3, P53, Ki67 status and vascular peritumoral invasion are strongly prognostic in luminal breast cancer. Breast Cancer Res. 11:R232009. View Article : Google Scholar : PubMed/NCBI

94 

Yamashita H, Toyama T, Nishio M, et al: p53 protein accumulation predicts resistance to endocrine therapy and decreased post-relapse survival in metastatic breast cancer. Breast Cancer Res. 8:R482006. View Article : Google Scholar : PubMed/NCBI

95 

Ellis MJ, Coop A, Singh B, et al: Letrozole inhibits tumor proliferation more effectively than tamoxifen independent of HER1/2 expression status. Cancer Res. 63:6523–6531. 2003.PubMed/NCBI

96 

Dowsett M, Smith IE, Ebbs SR, et al: Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer. J Natl Cancer Inst. 99:167–170. 2007. View Article : Google Scholar

97 

Cortesi L, De Matteis E, Cirilli C, Marcheselli L, Proietto M and Federico M: Outcome evaluation in pre-trastuzumab era between different breast cancer phenotypes: a population-based study on Italian women. Tumori. 98:743–750. 2012.PubMed/NCBI

98 

Wertheimer E, Gutierrez-Uzquiza A, Rosemblit C, Lopez-Haber C, Sosa MS and Kazanietz MG: Rac signaling in breast cancer: a tale of GEFs and GAPs. Cell Signal. 24:353–362. 2012. View Article : Google Scholar : PubMed/NCBI

99 

Lips EH, Mulder L, Ronde JJ, et al: Neoadjuvant chemotherapy in ER+HER2breast cancer: response prediction based on immunohistochemical and molecular characteristics. Breast Cancer Res Treat. 131:827–836. 2012.PubMed/NCBI

100 

Creighton CJ, Fu X, Hennessy BT, et al: Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+breast cancer. Breast Cancer Res. 12:R402010. View Article : Google Scholar : PubMed/NCBI

101 

Osborne CK, Shou J, Massarweh S and Schiff R: Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res. 11:865s–870s. 2005.PubMed/NCBI

102 

Zhang Y, Su H, Rahimi M, Tochihara R and Tang C: EGFRvIII-induced estrogen-independence, tamoxifen-resistance phenotype correlates with PgR expression and modulation of apoptotic molecules in breast cancer. Int J Cancer. 125:2021–2028. 2009. View Article : Google Scholar

103 

Thakkar JP and Mehta DG: A review of an unfavorable subset of breast cancer: estrogen receptor positive progesterone receptor negative. Oncologist. 16:276–285. 2011. View Article : Google Scholar : PubMed/NCBI

104 

Charafe-Jauffret E, Ginestier C, Monville F, et al: Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene. 25:2273–2284. 2006. View Article : Google Scholar : PubMed/NCBI

105 

Katoh M: Genetic alterations of FGF receptors: an emerging field in clinical cancer diagnostics and therapeutics. Expert Rev Anticancer Ther. 10:1375–1379. 2010. View Article : Google Scholar : PubMed/NCBI

106 

Sircoulomb F, Nicolas N, Ferrari A, et al: ZNF703 gene amplification at 8p12 specifies luminal B breast cancer. EMBO Mol Med. 3:153–166. 2011. View Article : Google Scholar : PubMed/NCBI

107 

Karn T, Ruckhäberle E, Hanker L, et al: Gene expression profiling of luminal B breast cancers reveals NHERF1 as a new marker of endocrine resistance. Breast Cancer Res Treat. 130:409–420. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Bergamaschi A, Christensen BL and Katzenellenbogen BS: Reversal of endocrine resistance in breast cancer: interrelationships among 14-3-3ζ, FOXM1, and a gene signature associated with mitosis. Breast Cancer Res. 13:R702011.PubMed/NCBI

109 

Glynn RW, Miller N, Mahon S and Kerin MJ: Expression levels of HER2/neu and those of collocated genes at 17q12-21, in breast cancer. Oncol Rep. 28:365–369. 2012.PubMed/NCBI

110 

Sotiriou C and Pusztai L: Gene-expression signatures in breast cancer. N Engl J Med. 360:790–800. 2009. View Article : Google Scholar : PubMed/NCBI

111 

Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S and Nakshatri H: Phosphatidylinositol 3-kinase/AKT- mediated activation of estrogen receptor α: a new model for anti-estrogen resistance. J Biol Chem. 276:9817–9824. 2001.

112 

Law JH, Habibi G, Hu K, et al: Phosphorylated insulin-like growth factor-i/insulin receptor is present in all breast cancer subtypes and is related to poor survival. Cancer Res. 68:10238–10246. 2008. View Article : Google Scholar : PubMed/NCBI

113 

Browne BC, O’Brien N, Duffy MJ, Crown J and O’Donovan N: HER-2 signaling and inhibition in breast cancer. Curr Cancer Drug Targets. 9:419–438. 2009. View Article : Google Scholar : PubMed/NCBI

114 

Foulkes WD, Smith IE and Reis-Filho JS: Triple-negative breast cancer. N Engl J Med. 363:1938–1948. 2010. View Article : Google Scholar : PubMed/NCBI

115 

Rodríguez-Pinilla SM, Sarrió D, Honrado E, et al: Vimentin and laminin expression is associated with basal-like phenotype in both sporadic and BRCA1-associated breast carcinomas. J Clin Pathol. 60:1006–1012. 2007.PubMed/NCBI

116 

Matos I, Dufloth R, Alvarenga M, Zeferino LC and Schmitt F: p63, cytokeratin 5, and P-cadherin: three molecular markers to distinguish basal phenotype in breast carcinomas. Virchows Arch. 447:688–694. 2005. View Article : Google Scholar : PubMed/NCBI

117 

Wu ZQ, Li XY, Hu CY, Ford M, Kleer CG and Weiss SJ: Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic breast cancer 1, early onset (BRCA1) repression. Proc Natl Acad Sci USA. 109:16654–16659. 2012. View Article : Google Scholar : PubMed/NCBI

118 

Agus DB, Akita RW, Fox WD, et al: Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell. 2:127–137. 2002. View Article : Google Scholar : PubMed/NCBI

119 

Kurokawa H, Lenferink AE, Simpson JF, et al: Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res. 60:5887–5894. 2000.

120 

Moulder SL, Baetz T, Borges V, et al: ARRY-380, a selective HER2 inhibitor: from drug design to clinical evaluation. Mol Cancer Ther. 10:abs. A143. 2011. View Article : Google Scholar

121 

Nelson JM and Fry DW: Akt, MAPK (Erk1/2), and p38 act in concert to promote apoptosis in response to ErbB receptor family inhibition. J Biol Chem. 276:14842–14847. 2001. View Article : Google Scholar : PubMed/NCBI

122 

Rabindran SK, Discafani CM, Rosfjord EC, et al: Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 64:3958–3965. 2004. View Article : Google Scholar : PubMed/NCBI

123 

Lai CJ, Bao R, Tao X, et al: CUDC-101, a multitargeted inhibitor of histone deacetylase, epidermal growth factor receptor, and human epidermal growth factor receptor 2, exerts potent anticancer activity. Cancer Res. 70:3647–3656. 2010. View Article : Google Scholar

124 

Hickinson DM, Klinowska T, Speake G, et al: AZD8931, an equipotent, reversible inhibitor of signaling by epidermal growth factor receptor, ERBB2 (HER2), and ERBB3: a unique agent for simultaneous ERBB receptor blockade in cancer. Clin Cancer Res. 16:1159–1169. 2010. View Article : Google Scholar : PubMed/NCBI

125 

Haluska P, Carboni JM, TenEyck C, et al: HER receptor signaling confers resistance to the insulin-like growth factor-I receptor inhibitor, BMS-536924. Mol Cancer Ther. 7:2589–2598. 2008. View Article : Google Scholar : PubMed/NCBI

126 

Miknis G, Wallace E, Lyssikatos J, et al: ARRY-334543, a potent, orally active small molecule inhibitor of EGFR and ErbB-2. Proc Amer Assoc Cancer Res. 24:abs. 3399. 2005.

127 

Kalous O, Conklin D, Desai AJ, et al: Dacomitinib (PF-00299804), an irreversible Pan-HER inhibitor, inhibits proliferation of HER2-amplified breast cancer cell lines resistant to trastuzumab and lapatinib. Mol Cancer Ther. 11:1978–1987. 2012. View Article : Google Scholar : PubMed/NCBI

128 

Ishikawa T, Seto M, Banno H, et al: Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold. J Med Chem. 54:8030–8050. 2011.

129 

Powis G, Ihle N and Kirkpatrick DL: Practicalities of drugging the phosphatidylinositol-3-kinase/Akt cell survival signaling pathway. Clin Cancer Res. 12:2964–2966. 2006. View Article : Google Scholar : PubMed/NCBI

130 

Bos M, Mendelsohn J, Kim YM, Albanell J, Fry DW and Baselga J: PD153035, a tyrosine kinase inhibitor, prevents epidermal growth factor receptor activation and inhibits growth of cancer cells in a receptor number-dependent manner. Clin Cancer Res. 3:2099–2106. 1997.

131 

Wilhelm SM, Dumas J, Adnane L, et al: Regorafenib (BAY 73–4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 129:245–255. 2011.

132 

Wilhelm SM, Carter C, Tang L, et al: BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64:7099–7109. 2004. View Article : Google Scholar : PubMed/NCBI

133 

Falcon BL, Barr S, Gokhale PC, et al: Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors. Cancer Res. 71:1573–1583. 2011. View Article : Google Scholar : PubMed/NCBI

134 

Mendel DB, Laird AD, Xin X, et al: In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 9:327–337. 2003.

135 

Hu-Lowe DD, Zou HY, Grazzini ML, et al: Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res. 14:7272–7283. 2008. View Article : Google Scholar

136 

Wedge SR, Kendrew J, Hennequin LF, et al: AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 65:4389–4400. 2005. View Article : Google Scholar

137 

Wedge SR, Ogilvie DJ, Dukes M, et al: ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 62:4645–4655. 2002.PubMed/NCBI

138 

Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A and Asada M: Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res. 14:5459–5465. 2008. View Article : Google Scholar

139 

Fletcher GC, Brokx RD, Denny TA, et al: ENMD-2076 is an orally active kinase inhibitor with antiangiogenic and antiproliferative mechanisms of action. Mol Cancer Ther. 10:126–137. 2011. View Article : Google Scholar : PubMed/NCBI

140 

Strumberg D, Schultheis B, Adamietz IA, et al: Phase I dose escalation study of telatinib (BAY 57-9352) in patients with advanced solid tumours. Br J Cancer. 99:1579–1585. 2008. View Article : Google Scholar : PubMed/NCBI

141 

Albert DH, Tapang P, Magoc TJ, et al: Preclinical activity of ABT-869, a multitargeted receptor tyrosine kinase inhibitor. Mol Cancer Ther. 5:995–1006. 2006. View Article : Google Scholar : PubMed/NCBI

142 

Mi YJ, Liang YJ, Huang HB, et al: Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters. Cancer Res. 70:7981–7991. 2010. View Article : Google Scholar : PubMed/NCBI

143 

Yakes FM, Chen J, Tan J, et al: Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 10:2298–2308. 2011. View Article : Google Scholar : PubMed/NCBI

144 

Mordant P, Loriot Y, Leteur C, et al: Dependence on phosphoinositide 3-kinase and RAS-RAF pathways drive the activity of RAF265, a novel RAF/VEGFR2 inhibitor, and RAD001 (Everolimus) in combination. Mol Cancer Ther. 9:358–368. 2010. View Article : Google Scholar : PubMed/NCBI

145 

Gendreau SB, Ventura R, Keast P, et al: Inhibition of the T790M gatekeeper mutant of the epidermal growth factor receptor by EXEL-7647. Clin Cancer Res. 13:3713–3723. 2007. View Article : Google Scholar : PubMed/NCBI

146 

Turner N and Grose R: Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 10:116–129. 2010. View Article : Google Scholar : PubMed/NCBI

147 

Gavine PR, Mooney L, Kilgour E, et al: AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res. 72:2045–2056. 2012. View Article : Google Scholar : PubMed/NCBI

148 

García-Echeverría C, Pearson MA, Marti A, et al: In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell. 5:231–239. 2004.PubMed/NCBI

149 

Sabbatini P, Rowand JL, Groy A, et al: Antitumor activity of GSK1904529A, a small-molecule inhibitor of the insulin-like growth factor-I receptor tyrosine kinase. Clin Cancer Res. 15:3058–3067. 2009. View Article : Google Scholar : PubMed/NCBI

150 

Mulvihill MJ, Cooke A, Rosenfeld-Franklin M, et al: Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor. Future Med Chem. 1:1153–1171. 2009. View Article : Google Scholar : PubMed/NCBI

151 

Wen B, Deutsch E, Marangoni E, et al: Tyrphostin AG 1024 modulates radiosensitivity in human breast cancer cells. Br J Cancer. 85:2017–2021. 2001. View Article : Google Scholar : PubMed/NCBI

152 

Sabbatini P, Korenchuk S, Rowand JL, et al: GSK1838705A inhibits the insulin-like growth factor-1 receptor and anaplastic lymphoma kinase and shows antitumor activity in experimental models of human cancers. Mol Cancer Ther. 8:2811–2820. 2009. View Article : Google Scholar : PubMed/NCBI

153 

Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW and Liao JK: Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature. 407:538–541. 2000. View Article : Google Scholar : PubMed/NCBI

154 

Migliaccio A, Castoria G, Di Domenico M, et al: Steroid-induced androgen receptor-oestradiol receptor β-Src complex triggers prostate cancer cell proliferation. EMBO J. 19:5406–5417. 2000.PubMed/NCBI

155 

Junttila TT, Akita RW, Parsons K, et al: Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell. 15:429–440. 2009. View Article : Google Scholar : PubMed/NCBI

156 

Yu K, Toral-Barza L, Shi C, Zhang WG and Zask A: Response and determinants of cancer cell susceptibility to PI3K inhibitors: combined targeting of PI3K and Mek1 as an effective anticancer strategy. Cancer Biol Ther. 7:307–315. 2008.PubMed/NCBI

157 

Smirnova T, Zhou ZN, Flinn RJ, et al: Phosphoinositide 3-kinase signaling is critical for ErbB3-driven breast cancer cell motility and metastasis. Oncogene. 31:706–715. 2012. View Article : Google Scholar : PubMed/NCBI

158 

Knight SD, Adams ND, Burgess JL, et al: Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med Chem Lett. 1:39–43. 2010. View Article : Google Scholar : PubMed/NCBI

159 

Mallon R, Hollander I, Feldberg L, et al: Antitumor efficacy profile of PKI-402, a dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor. Mol Cancer Ther. 9:976–984. 2010. View Article : Google Scholar : PubMed/NCBI

160 

Sutherlin DP, Bao L, Berry M, et al: Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer. J Med Chem. 54:7579–7587. 2011. View Article : Google Scholar

161 

Venkatesan AM, Dehnhardt CM, Delos Santos E, et al: Bis(morpholino-1,3,5-triazine) derivatives: potent adenosine 5′-triphosphate competitive phosphatidylinositol-3-kinase/mammalian target of rapamycin inhibitors: discovery of compound 26 (PKI-587), a highly efficacious dual inhibitor. J Med Chem. 53:2636–2645. 2010.PubMed/NCBI

162 

Rhodes N, Heerding DA, Duckett DR, et al: Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res. 68:2366–2374. 2008. View Article : Google Scholar : PubMed/NCBI

163 

Grimshaw KM, Hunter LJ, Yap TA, et al: AT7867 is a potent and oral inhibitor of AKT and p70 S6 kinase that induces pharmacodynamic changes and inhibits human tumor xenograft growth. Mol Cancer Ther. 9:1100–1110. 2010. View Article : Google Scholar : PubMed/NCBI

164 

Meuillet EJ, Zuohe S, Lemos R, et al: Molecular pharmacology and antitumor activity of PHT-427, a novel Akt/phosphatidylinositide-dependent protein kinase 1 pleckstrin homology domain inhibitor. Mol Cancer Ther. 9:706–717. 2010. View Article : Google Scholar : PubMed/NCBI

165 

Lu CH, Wyszomierski SL, Tseng LM, et al: Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin Cancer Res. 13:5883–5888. 2007. View Article : Google Scholar : PubMed/NCBI

166 

Feldman RI, Wu JM, Polokoff MA, et al: Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1. J Biol Chem. 280:19867–19874. 2005. View Article : Google Scholar : PubMed/NCBI

167 

Cully M, You H, Levine AJ and Mak TW: Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 6:184–192. 2006. View Article : Google Scholar : PubMed/NCBI

168 

Shor B, Zhang WG, Toral-Barza L, et al: A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of mTOR kinase activity and profound repression of global protein synthesis. Cancer Res. 68:2934–2943. 2008. View Article : Google Scholar : PubMed/NCBI

169 

Rivera VM, Squillace RM, Miller D, et al: Ridaforolimus (AP23573; MK-8669), a potent mTOR inhibitor, has broad antitumor activity and can be optimally administered using intermittent dosing regimens. Mol Cancer Ther. 10:1059–1071. 2011. View Article : Google Scholar

170 

Yuan J, Mehta PP, Yin MJ, et al: PF-04691502, a potent and selective oral inhibitor of PI3K and mTOR kinases with antitumor activity. Mol Cancer Ther. 10:2189–2199. 2011. View Article : Google Scholar : PubMed/NCBI

171 

Chresta CM, Davies BR, Hickson I, et al: AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 70:288–298. 2009. View Article : Google Scholar : PubMed/NCBI

172 

Bhagwat SV, Gokhale PC, Crew AP, et al: Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. Mol Cancer Ther. 10:1394–1406. 2011. View Article : Google Scholar : PubMed/NCBI

173 

Wallin JJ, Edgar KA, Guan J, et al: GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Mol Cancer Ther. 10:2426–2436. 2011. View Article : Google Scholar : PubMed/NCBI

174 

Yu K, Toral-Barza L, Shi C, et al: Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res. 69:6232–6240. 2009. View Article : Google Scholar : PubMed/NCBI

175 

Guichard SM, Howard Z, Heathcote D, et al: AZD2014, a dual mTORC1 and mTORC2 inhibitor is differentiated from allosteric inhibitors of mTORC1 in ER+breast cancer. Cancer Res. 72:abs. 917. 2012. View Article : Google Scholar

176 

Liu Q, Thoreen C, Wang J, Sabatini D and Gray NS: mTOR mediated anti-cancer drug discovery. Drug Discov Today Ther Strateg. 6:47–55. 2009. View Article : Google Scholar : PubMed/NCBI

177 

Hawkins W, Mitchell C, McKinstry R, et al: Transient exposure of mammary tumors to PD184352 and UCN-01 causes tumor cell death in vivo and prolonged suppression of tumor regrowth. Cancer Biol Ther. 4:1275–1284. 2005. View Article : Google Scholar : PubMed/NCBI

178 

Ohren JF, Chen H, Pavlovsky A, et al: Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol. 11:1192–1197. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

January 2014
Volume 2 Issue 1

Print ISSN: 2049-9434
Online ISSN:2049-9442

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, M.H., Man, H.T., Zhao, X.D., Dong, N., & Ma, S.L. (2014). Estrogen receptor-positive breast cancer molecular signatures and therapeutic potentials (Review). Biomedical Reports, 2, 41-52. https://doi.org/10.3892/br.2013.187
MLA
Zhang, M. H., Man, H. T., Zhao, X. D., Dong, N., Ma, S. L."Estrogen receptor-positive breast cancer molecular signatures and therapeutic potentials (Review)". Biomedical Reports 2.1 (2014): 41-52.
Chicago
Zhang, M. H., Man, H. T., Zhao, X. D., Dong, N., Ma, S. L."Estrogen receptor-positive breast cancer molecular signatures and therapeutic potentials (Review)". Biomedical Reports 2, no. 1 (2014): 41-52. https://doi.org/10.3892/br.2013.187